ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10972
  4. Cited By
Efficient Gradient Flows in Sliced-Wasserstein Space

Efficient Gradient Flows in Sliced-Wasserstein Space

21 October 2021
Clément Bonet
Nicolas Courty
Franccois Septier
Lucas Drumetz
ArXivPDFHTML

Papers citing "Efficient Gradient Flows in Sliced-Wasserstein Space"

14 / 14 papers shown
Title
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Computational and Statistical Asymptotic Analysis of the JKO Scheme for Iterative Algorithms to update distributions
Shang Wu
Yazhen Wang
43
0
0
11 Jan 2025
Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for
  Heterogeneous Joint Distributions
Hierarchical Hybrid Sliced Wasserstein: A Scalable Metric for Heterogeneous Joint Distributions
Khai Nguyen
Nhat Ho
42
3
0
23 Apr 2024
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
Measure transfer via stochastic slicing and matching
Measure transfer via stochastic slicing and matching
Shiying Li
Caroline Moosmueller
24
3
0
11 Jul 2023
Energy-Based Sliced Wasserstein Distance
Energy-Based Sliced Wasserstein Distance
Khai Nguyen
Nhat Ho
25
21
0
26 Apr 2023
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections
Clément Bonet
Laetitia Chapel
Lucas Drumetz
Nicolas Courty
11
14
0
18 Nov 2022
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
43
1
0
25 Oct 2022
Optimal Neural Network Approximation of Wasserstein Gradient Direction
  via Convex Optimization
Optimal Neural Network Approximation of Wasserstein Gradient Direction via Convex Optimization
Yifei Wang
Peng Chen
Mert Pilanci
Wuchen Li
35
8
0
26 May 2022
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
72
54
0
04 Dec 2021
Generative Modeling with Optimal Transport Maps
Generative Modeling with Optimal Transport Maps
Litu Rout
Alexander Korotin
Evgeny Burnaev
OT
DiffM
122
65
0
06 Oct 2021
Relative Entropy Gradient Sampler for Unnormalized Distributions
Relative Entropy Gradient Sampler for Unnormalized Distributions
Xingdong Feng
Yuan Gao
Jian Huang
Yuling Jiao
Xu Liu
33
7
0
06 Oct 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
128
100
0
28 Sep 2019
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
184
599
0
22 Sep 2016
1