ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09992
  4. Cited By
ERQA: Edge-Restoration Quality Assessment for Video Super-Resolution

ERQA: Edge-Restoration Quality Assessment for Video Super-Resolution

19 October 2021
Anastasia Kirillova
E. Lyapustin
Anastasia Antsiferova
Dmitry Vatolin
    SupR
ArXivPDFHTML

Papers citing "ERQA: Edge-Restoration Quality Assessment for Video Super-Resolution"

9 / 9 papers shown
Title
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure
  Synthetic Data
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Xintao Wang
Liangbin Xie
Chao Dong
Ying Shan
87
1,124
0
22 Jul 2021
Image Super-Resolution Quality Assessment: Structural Fidelity Versus
  Statistical Naturalness
Image Super-Resolution Quality Assessment: Structural Fidelity Versus Statistical Naturalness
Wei Zhou
Zhou Wang
Zhibo Chen
21
32
0
15 May 2021
Revisiting Temporal Modeling for Video Super-resolution
Revisiting Temporal Modeling for Video Super-resolution
Takashi Isobe
Fang Zhu
Xu Jia
Shengjin Wang
SupR
19
87
0
13 Aug 2020
Image Quality Assessment: Unifying Structure and Texture Similarity
Image Quality Assessment: Unifying Structure and Texture Similarity
Keyan Ding
Kede Ma
Shiqi Wang
Eero P. Simoncelli
82
773
0
16 Apr 2020
Recurrent Back-Projection Network for Video Super-Resolution
Recurrent Back-Projection Network for Video Super-Resolution
Muhammad Haris
Gregory Shakhnarovich
Norimichi Ukita
SupR
47
433
0
25 Mar 2019
TDAN: Temporally Deformable Alignment Network for Video Super-Resolution
TDAN: Temporally Deformable Alignment Network for Video Super-Resolution
Yapeng Tian
Yulun Zhang
Y. Fu
Chenliang Xu
SupR
50
523
0
07 Dec 2018
Toward Bridging the Simulated-to-Real Gap: Benchmarking Super-Resolution
  on Real Data
Toward Bridging the Simulated-to-Real Gap: Benchmarking Super-Resolution on Real Data
Thomas Köhler
M. Bätz
Farzad Naderi
Andre Kaup
Andreas Maier
Christian Riess
SupR
43
25
0
17 Sep 2018
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
EGVM
297
11,610
0
11 Jan 2018
Learning a No-Reference Quality Metric for Single-Image Super-Resolution
Learning a No-Reference Quality Metric for Single-Image Super-Resolution
Chao Ma
Chih-Yuan Yang
Xiaokang Yang
Ming-Hsuan Yang
SupR
25
509
0
18 Dec 2016
1