Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.08406
Cited By
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
15 October 2021
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science"
6 / 6 papers shown
Title
Invariant multiscale neural networks for data-scarce scientific applications
I. Schurov
D. Alforov
M. Katsnelson
A. Bagrov
A. Itin
AI4CE
34
0
0
12 Jun 2024
On the Importance of Calibration in Semi-supervised Learning
Charlotte Loh
Rumen Dangovski
Shivchander Sudalairaj
Seung-Jun Han
Ligong Han
Leonid Karlinsky
Marin Soljacic
Akash Srivastava
27
6
0
10 Oct 2022
Equivariant Contrastive Learning
Rumen Dangovski
Li Jing
Charlotte Loh
Seung-Jun Han
Akash Srivastava
Brian Cheung
Pulkit Agrawal
Marin Soljacic
31
77
0
28 Oct 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
171
246
0
01 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
74
17
0
23 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,240
0
08 Jan 2021
1