ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.07810
  4. Cited By
Towards Statistical and Computational Complexities of Polyak Step Size
  Gradient Descent

Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent

15 October 2021
Zhaolin Ren
Fuheng Cui
Alexia Atsidakou
Sujay Sanghavi
Nhat Ho
ArXiv (abs)PDFHTML

Papers citing "Towards Statistical and Computational Complexities of Polyak Step Size Gradient Descent"

3 / 3 papers shown
Title
An Exponentially Increasing Step-size for Parameter Estimation in
  Statistical Models
An Exponentially Increasing Step-size for Parameter Estimation in Statistical Models
Nhat Ho
Zhaolin Ren
Sujay Sanghavi
Purnamrita Sarkar
Rachel A. Ward
72
3
0
16 May 2022
Network Gradient Descent Algorithm for Decentralized Federated Learning
Network Gradient Descent Algorithm for Decentralized Federated Learning
Shuyuan Wu
Danyang Huang
Hansheng Wang
FedML
64
11
0
06 May 2022
Improving Computational Complexity in Statistical Models with
  Second-Order Information
Improving Computational Complexity in Statistical Models with Second-Order Information
Zhaolin Ren
Jiacheng Zhuo
Sujay Sanghavi
Nhat Ho
37
1
0
09 Feb 2022
1