ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.07098
  4. Cited By
A Cubic Regularization Approach for Finding Local Minimax Points in
  Nonconvex Minimax Optimization

A Cubic Regularization Approach for Finding Local Minimax Points in Nonconvex Minimax Optimization

14 October 2021
Ziyi Chen
Zhengyang Hu
Qunwei Li
Zhe Wang
Yi Zhou
ArXivPDFHTML

Papers citing "A Cubic Regularization Approach for Finding Local Minimax Points in Nonconvex Minimax Optimization"

3 / 3 papers shown
Title
An Efficient Stochastic Algorithm for Decentralized
  Nonconvex-Strongly-Concave Minimax Optimization
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
65
5
0
05 Dec 2022
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
On Solving Minimax Optimization Locally: A Follow-the-Ridge Approach
Yuanhao Wang
Guodong Zhang
Jimmy Ba
33
100
0
16 Oct 2019
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave
  Saddle Point Problems without Strong Convexity
Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity
S. Du
Wei Hu
58
120
0
05 Feb 2018
1