ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05941
  4. Cited By
Rank-based loss for learning hierarchical representations

Rank-based loss for learning hierarchical representations

11 October 2021
I. Nolasco
D. Stowell
ArXivPDFHTML

Papers citing "Rank-based loss for learning hierarchical representations"

5 / 5 papers shown
Title
Hybrid Losses for Hierarchical Embedding Learning
Hybrid Losses for Hierarchical Embedding Learning
Haokun Tian
Stefan Lattner
Brian McFee
Charalampos Saitis
50
0
0
22 Jan 2025
Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport
Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport
Siqi Zeng
Sixian Du
M. Yamada
Han Zhao
OT
46
0
0
04 Oct 2024
An Attention-based Approach to Hierarchical Multi-label Music Instrument
  Classification
An Attention-based Approach to Hierarchical Multi-label Music Instrument Classification
Zhi-Wei Zhong
M. Hirano
Kazuki Shimada
Kazuya Tateishi
Shusuke Takahashi
Yuki Mitsufuji
20
12
0
16 Feb 2023
Computational bioacoustics with deep learning: a review and roadmap
Computational bioacoustics with deep learning: a review and roadmap
D. Stowell
32
235
0
13 Dec 2021
Leveraging Hierarchical Structures for Few-Shot Musical Instrument
  Recognition
Leveraging Hierarchical Structures for Few-Shot Musical Instrument Recognition
Hugo Flores Garcia
Aldo Aguilar
Ethan Manilow
Bryan Pardo
48
32
0
14 Jul 2021
1