Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.05645
Cited By
A global convergence theory for deep ReLU implicit networks via over-parameterization
11 October 2021
Tianxiang Gao
Hailiang Liu
Jia Liu
Hridesh Rajan
Hongyang Gao
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A global convergence theory for deep ReLU implicit networks via over-parameterization"
14 / 14 papers shown
Title
KIWI: A Dataset of Knowledge-Intensive Writing Instructions for Answering Research Questions
Fangyuan Xu
Kyle Lo
Luca Soldaini
Bailey Kuehl
Eunsol Choi
David Wadden
37
6
0
06 Mar 2024
Deep Equilibrium Models are Almost Equivalent to Not-so-deep Explicit Models for High-dimensional Gaussian Mixtures
Zenan Ling
Longbo Li
Zhanbo Feng
Yixuan Zhang
Feng Zhou
Robert C. Qiu
Zhenyu Liao
32
4
0
05 Feb 2024
Wide Neural Networks as Gaussian Processes: Lessons from Deep Equilibrium Models
Tianxiang Gao
Xiaokai Huo
Hailiang Liu
Hongyang Gao
BDL
17
8
0
16 Oct 2023
Homotopy Relaxation Training Algorithms for Infinite-Width Two-Layer ReLU Neural Networks
Yahong Yang
Qipin Chen
Wenrui Hao
29
4
0
26 Sep 2023
Global Convergence Rate of Deep Equilibrium Models with General Activations
Lan V. Truong
39
2
0
11 Feb 2023
On the optimization and generalization of overparameterized implicit neural networks
Tianxiang Gao
Hongyang Gao
MLT
AI4CE
19
3
0
30 Sep 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
Deep equilibrium networks are sensitive to initialization statistics
Atish Agarwala
S. Schoenholz
16
7
0
19 Jul 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
29
3
0
02 Jul 2022
Global Convergence of Over-parameterized Deep Equilibrium Models
Zenan Ling
Xingyu Xie
Qiuhao Wang
Zongpeng Zhang
Zhouchen Lin
32
12
0
27 May 2022
Gradient Descent Optimizes Infinite-Depth ReLU Implicit Networks with Linear Widths
Tianxiang Gao
Hongyang Gao
MLT
35
5
0
16 May 2022
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
38
49
0
24 Jan 2021
Almost Sure Convergence of Dropout Algorithms for Neural Networks
Albert Senen-Cerda
J. Sanders
16
8
0
06 Feb 2020
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
1