Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.05365
Cited By
Intriguing Properties of Input-dependent Randomized Smoothing
11 October 2021
Peter Súkeník
A. Kuvshinov
Stephan Günnemann
AAML
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Intriguing Properties of Input-dependent Randomized Smoothing"
19 / 19 papers shown
Title
Deep Learning Through the Lens of Example Difficulty
R. Baldock
Hartmut Maennel
Behnam Neyshabur
72
160
0
17 Jun 2021
Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and Accuracy
Chong Chen
Kezhi Kong
Peihong Yu
J. Luque
Tom Goldstein
Furong Huang
AAML
37
8
0
07 Mar 2021
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip Torr
Guohao Li
UQCV
58
35
0
08 Dec 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
54
51
0
09 Jul 2020
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
47
6
0
03 Mar 2020
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
139
2,038
0
08 Feb 2019
Sorting out Lipschitz function approximation
Cem Anil
James Lucas
Roger C. Grosse
86
321
0
13 Nov 2018
Certified Adversarial Robustness with Additive Noise
Bai Li
Changyou Chen
Wenlin Wang
Lawrence Carin
AAML
91
348
0
10 Sep 2018
Towards Fast Computation of Certified Robustness for ReLU Networks
Tsui-Wei Weng
Huan Zhang
Hongge Chen
Zhao Song
Cho-Jui Hsieh
Duane S. Boning
Inderjit S. Dhillon
Luca Daniel
AAML
98
694
0
25 Apr 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
103
307
0
12 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
92
932
0
09 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
214
3,184
0
01 Feb 2018
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
155
2,149
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
299
12,060
0
19 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,857
0
20 May 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
469
3,140
0
04 Nov 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
269
19,045
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
266
14,912
1
21 Dec 2013
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
79
1,338
0
12 Jun 2012
1