Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.05323
Cited By
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
11 October 2021
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training"
16 / 16 papers shown
Title
Efficient Zero-Order Federated Finetuning of Language Models for Resource-Constrained Devices
Mohamed Aboelenien Ahmed
Kilian Pfeiffer
R. Khalili
Heba Khdr
J. Henkel
FedML
91
0
0
17 Feb 2025
Efficient Federated Finetuning of Tiny Transformers with Resource-Constrained Devices
Kilian Pfeiffer
Mohamed Aboelenien Ahmed
R. Khalili
J. Henkel
38
0
0
12 Nov 2024
Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models
Hui-Po Wang
Mario Fritz
35
3
0
26 Sep 2024
Resource-Efficient Federated Multimodal Learning via Layer-wise and Progressive Training
Ye Lin Tun
Chu Myaet Thwal
Minh N. H. Nguyen
Choong Seon Hong
42
0
0
22 Jul 2024
A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues
Zibo Wang
Haichao Ji
Yifei Zhu
Dan Wang
Zhu Han
51
1
0
19 Apr 2024
LW-FedSSL: Resource-efficient Layer-wise Federated Self-supervised Learning
Ye Lin Tun
Chu Myaet Thwal
Le Quang Huy
Minh N. H. Nguyen
Choong Seon Hong
FedML
40
2
0
22 Jan 2024
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
Aggregating Capacity in FL through Successive Layer Training for Computationally-Constrained Devices
Kilian Pfeiffer
R. Khalili
J. Henkel
FedML
44
5
0
26 May 2023
Does Federated Learning Really Need Backpropagation?
H. Feng
Tianyu Pang
Chao Du
Wei Chen
Shuicheng Yan
Min-Bin Lin
FedML
36
10
0
28 Jan 2023
FedCliP: Federated Learning with Client Pruning
Beibei Li
Zerui Shao
Ao Liu
Peiran Wang
FedML
45
1
0
17 Jan 2023
Federated Learning for Inference at Anytime and Anywhere
Zicheng Liu
Da Li
Javier Fernandez-Marques
Stefanos Laskaridis
Yan Gao
L. Dudziak
Stan Z. Li
S. Hu
Timothy M. Hospedales
FedML
32
5
0
08 Dec 2022
FedTune: A Deep Dive into Efficient Federated Fine-Tuning with Pre-trained Transformers
Jinyu Chen
Wenchao Xu
Song Guo
Junxiao Wang
Jie Zhang
Yining Qi
FedML
28
32
0
15 Nov 2022
Accelerated Federated Learning with Decoupled Adaptive Optimization
Jiayin Jin
Jiaxiang Ren
Yang Zhou
Lingjuan Lyu
Ji Liu
Dejing Dou
AI4CE
FedML
19
51
0
14 Jul 2022
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
37
76
0
25 Feb 2021
CaPC Learning: Confidential and Private Collaborative Learning
Christopher A. Choquette-Choo
Natalie Dullerud
Adam Dziedzic
Yunxiang Zhang
S. Jha
Nicolas Papernot
Xiao Wang
FedML
67
57
0
09 Feb 2021
Cascade EF-GAN: Progressive Facial Expression Editing with Local Focuses
R. Wu
Gongjie Zhang
Shijian Lu
Tao Chen
CVBM
26
95
0
12 Mar 2020
1