ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04597
  4. Cited By
A Proximal Algorithm for Sampling from Non-smooth Potentials

A Proximal Algorithm for Sampling from Non-smooth Potentials

9 October 2021
Jiaming Liang
Yongxin Chen
ArXivPDFHTML

Papers citing "A Proximal Algorithm for Sampling from Non-smooth Potentials"

21 / 21 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
53
1
0
08 Feb 2025
Convergence of Noise-Free Sampling Algorithms with Regularized
  Wasserstein Proximals
Convergence of Noise-Free Sampling Algorithms with Regularized Wasserstein Proximals
Fuqun Han
Stanley Osher
Wuchen Li
44
1
0
03 Sep 2024
Faster Sampling via Stochastic Gradient Proximal Sampler
Faster Sampling via Stochastic Gradient Proximal Sampler
Xunpeng Huang
Difan Zou
Yian Ma
Hanze Dong
Tong Zhang
54
3
0
27 May 2024
Proximal Oracles for Optimization and Sampling
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
31
3
0
02 Apr 2024
Subgradient Langevin Methods for Sampling from Non-smooth Potentials
Subgradient Langevin Methods for Sampling from Non-smooth Potentials
Andreas Habring
M. Holler
T. Pock
16
8
0
02 Aug 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo
  Algorithms
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
T. Pock
39
4
0
25 May 2023
The probability flow ODE is provably fast
The probability flow ODE is provably fast
Sitan Chen
Sinho Chewi
Holden Lee
Yuanzhi Li
Jianfeng Lu
Adil Salim
DiffM
33
84
0
19 May 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
16
34
0
20 Feb 2023
Improved dimension dependence of a proximal algorithm for sampling
Improved dimension dependence of a proximal algorithm for sampling
JiaoJiao Fan
Bo Yuan
Yongxin Chen
24
24
0
20 Feb 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order
  Stationary Points and Excess Risks
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
25
12
0
20 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean
  Proximal Sampler
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
17
7
0
13 Feb 2023
Resolving the Mixing Time of the Langevin Algorithm to its Stationary
  Distribution for Log-Concave Sampling
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
27
24
0
16 Oct 2022
Nesterov smoothing for sampling without smoothness
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
37
2
0
15 Aug 2022
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
Tim Tsz-Kit Lau
Han Liu
56
7
0
10 Jul 2022
A Proximal Algorithm for Sampling from Non-convex Potentials
Jiaming Liang
Yongxin Chen
26
4
0
20 May 2022
Private Convex Optimization via Exponential Mechanism
Private Convex Optimization via Exponential Mechanism
Sivakanth Gopi
Y. Lee
Daogao Liu
81
52
0
01 Mar 2022
A Proximal Algorithm for Sampling
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
9
17
0
28 Feb 2022
Improved analysis for a proximal algorithm for sampling
Improved analysis for a proximal algorithm for sampling
Yongxin Chen
Sinho Chewi
Adil Salim
Andre Wibisono
13
54
0
13 Feb 2022
When is the Convergence Time of Langevin Algorithms Dimension
  Independent? A Composite Optimization Viewpoint
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
32
16
0
05 Oct 2021
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
13
37
0
23 May 2019
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1