ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04286
  4. Cited By
Is MC Dropout Bayesian?

Is MC Dropout Bayesian?

8 October 2021
Loic Le Folgoc
V. Baltatzis
S. Desai
A. Devaraj
S. Ellis
O. M. Manzanera
A. Nair
Huaqi Qiu
J. Schnabel
Ben Glocker
    BDL
    OOD
    UQCV
ArXivPDFHTML

Papers citing "Is MC Dropout Bayesian?"

7 / 7 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Fine-Grained Uncertainty Quantification via Collisions
Fine-Grained Uncertainty Quantification via Collisions
Jesse Friedbaum
S. Adiga
Ravi Tandon
69
0
0
18 Nov 2024
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications
  to Cardiac MRI Segmentation
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation
Yidong Zhao
João Tourais
Iain Pierce
Christian Nitsche
T. Treibel
Sebastian Weingartner
Artur M. Schweidtmann
Qian Tao
BDL
UQCV
38
5
0
04 Mar 2024
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Data-Driven Physics-Informed Neural Networks: A Digital Twin Perspective
Sunwoong Yang
Hojin Kim
Y. Hong
K. Yee
R. Maulik
Namwoo Kang
PINN
AI4CE
23
17
0
05 Jan 2024
Distance Preserving Machine Learning for Uncertainty Aware Accelerator
  Capacitance Predictions
Distance Preserving Machine Learning for Uncertainty Aware Accelerator Capacitance Predictions
S. Goldenberg
M. Schram
Kishansingh Rajput
T. Britton
C. Pappas
Dawei Lu
Jared Walden
M. Radaideh
Sarah Cousineau
S. Harave
29
1
0
05 Jul 2023
Bayesian posterior approximation with stochastic ensembles
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1