ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04267
  4. Cited By
Exploring Heterogeneous Characteristics of Layers in ASR Models for More
  Efficient Training

Exploring Heterogeneous Characteristics of Layers in ASR Models for More Efficient Training

8 October 2021
Lillian Zhou
Dhruv Guliani
Andreas Kabel
Giovanni Motta
F. Beaufays
ArXivPDFHTML

Papers citing "Exploring Heterogeneous Characteristics of Layers in ASR Models for More Efficient Training"

4 / 4 papers shown
Title
Federated Pruning: Improving Neural Network Efficiency with Federated
  Learning
Federated Pruning: Improving Neural Network Efficiency with Federated Learning
Rongmei Lin
Yonghui Xiao
Tien-Ju Yang
Ding Zhao
Li Xiong
Giovanni Motta
Franccoise Beaufays
FedML
39
12
0
14 Sep 2022
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
253
644
0
21 Apr 2021
Echo State Speech Recognition
Echo State Speech Recognition
H. Shrivastava
Ankush Garg
Yuan Cao
Yu Zhang
Tara N. Sainath
50
22
0
18 Feb 2021
1