ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04175
  4. Cited By
RelaySum for Decentralized Deep Learning on Heterogeneous Data

RelaySum for Decentralized Deep Learning on Heterogeneous Data

8 October 2021
Thijs Vogels
Lie He
Anastasia Koloskova
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
    FedML
    MoE
ArXivPDFHTML

Papers citing "RelaySum for Decentralized Deep Learning on Heterogeneous Data"

23 / 23 papers shown
Title
A Bias-Correction Decentralized Stochastic Gradient Algorithm with Momentum Acceleration
A Bias-Correction Decentralized Stochastic Gradient Algorithm with Momentum Acceleration
Yuchen Hu
Xi Chen
Weidong Liu
Xiaojun Mao
84
0
0
31 Jan 2025
DecentLaM: Decentralized Momentum SGD for Large-batch Deep Training
DecentLaM: Decentralized Momentum SGD for Large-batch Deep Training
Kun Yuan
Yiming Chen
Xinmeng Huang
Yingya Zhang
Pan Pan
Yinghui Xu
W. Yin
MoE
81
64
0
24 Apr 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
  Heterogeneous Data
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
73
101
0
09 Feb 2021
Optimal Complexity in Decentralized Training
Optimal Complexity in Decentralized Training
Yucheng Lu
Christopher De Sa
70
75
0
15 Jun 2020
Evolving Normalization-Activation Layers
Evolving Normalization-Activation Layers
Hanxiao Liu
Andrew Brock
Karen Simonyan
Quoc V. Le
84
80
0
06 Apr 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
78
505
0
23 Mar 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
203
6,229
0
10 Dec 2019
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
  lighter
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
Victor Sanh
Lysandre Debut
Julien Chaumond
Thomas Wolf
204
7,481
0
02 Oct 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
54
113
0
09 Jul 2019
Bayesian Nonparametric Federated Learning of Neural Networks
Bayesian Nonparametric Federated Learning of Neural Networks
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
Y. Khazaeni
FedML
124
728
0
28 May 2019
Stochastic Gradient Push for Distributed Deep Learning
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
73
344
0
27 Nov 2018
Push-Pull Gradient Methods for Distributed Optimization in Networks
Push-Pull Gradient Methods for Distributed Optimization in Networks
Shi Pu
Wei Shi
Jinming Xu
A. Nedić
32
320
0
15 Oct 2018
Distributed Stochastic Gradient Tracking Methods
Distributed Stochastic Gradient Tracking Methods
Shi Pu
A. Nedić
62
291
0
25 May 2018
D$^2$: Decentralized Training over Decentralized Data
D2^22: Decentralized Training over Decentralized Data
Hanlin Tang
Xiangru Lian
Ming Yan
Ce Zhang
Ji Liu
31
350
0
19 Mar 2018
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case
  Study for Decentralized Parallel Stochastic Gradient Descent
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
48
1,226
0
25 May 2017
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
346
10,467
0
21 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
NEXT: In-Network Nonconvex Optimization
NEXT: In-Network Nonconvex Optimization
P. Lorenzo
G. Scutari
91
508
0
01 Feb 2016
Character-level Convolutional Networks for Text Classification
Character-level Convolutional Networks for Text Classification
Xiang Zhang
Jiaqi Zhao
Yann LeCun
252
6,101
0
04 Sep 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
430
43,234
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.5K
149,842
0
22 Dec 2014
Graph diameter, eigenvalues, and minimum-time consensus
Graph diameter, eigenvalues, and minimum-time consensus
Julien Hendrickx
Raphaël M. Jungers
Alexander Olshevsky
Guillaume Vankeerberghen
79
71
0
27 Nov 2012
Distributed Delayed Stochastic Optimization
Distributed Delayed Stochastic Optimization
Alekh Agarwal
John C. Duchi
123
626
0
28 Apr 2011
1