ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04099
  4. Cited By
Topology-Imbalance Learning for Semi-Supervised Node Classification

Topology-Imbalance Learning for Semi-Supervised Node Classification

8 October 2021
Deli Chen
Yankai Lin
Guangxiang Zhao
Xuancheng Ren
Peng Li
Jie Zhou
Xu Sun
ArXivPDFHTML

Papers citing "Topology-Imbalance Learning for Semi-Supervised Node Classification"

12 / 12 papers shown
Title
IceBerg: Debiased Self-Training for Class-Imbalanced Node Classification
Zhixun Li
Dingshuo Chen
Tong Zhao
Ziyu Zhao
Hongrui Liu
Qing Cui
Jun Zhou
Jeffrey Xu Yu
SSL
105
0
0
10 Feb 2025
Toward Scalable Graph Unlearning: A Node Influence Maximization based Approach
Toward Scalable Graph Unlearning: A Node Influence Maximization based Approach
Xunkai Li
Bowen Fan
Zhengyu Wu
Zhiyu Li
Rong-Hua Li
Guoren Wang
MU
35
0
0
21 Jan 2025
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Jinluan Yang
Zhengyu Chen
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
53
1
0
18 Aug 2024
A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
  Privacy and OOD Challenges
A Survey of Graph Neural Networks in Real world: Imbalance, Noise, Privacy and OOD Challenges
Wei Ju
Siyu Yi
Yifan Wang
Zhiping Xiao
Zhengyan Mao
...
Senzhang Wang
Xinwang Liu
Xiao Luo
Philip S. Yu
Ming Zhang
AI4CE
36
35
0
07 Mar 2024
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Rethinking Semi-Supervised Imbalanced Node Classification from Bias-Variance Decomposition
Divin Yan
Gengchen Wei
Chen Yang
Shengzhong Zhang
Zengfeng Huang
AI4CE
44
11
0
28 Oct 2023
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
  Future Directions
A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions
Zemin Liu
Yuan N. Li
Nan-Fang Chen
Qian Wang
Bryan Hooi
Bin He
FaML
14
13
0
26 Aug 2023
GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node
  Classification
GraphSHA: Synthesizing Harder Samples for Class-Imbalanced Node Classification
Wenzhong Li
Changdong Wang
Hui Xiong
Jian-Huang Lai
22
24
0
16 Jun 2023
Using Active Learning Methods to Strategically Select Essays for
  Automated Scoring
Using Active Learning Methods to Strategically Select Essays for Automated Scoring
Tahereh Firoozi
Hamid Reza Mohammadi
Mark J. Gierl
24
8
0
02 Jan 2023
TopoImb: Toward Topology-level Imbalance in Learning from Graphs
TopoImb: Toward Topology-level Imbalance in Learning from Graphs
Tianxiang Zhao
Dongsheng Luo
Xiang Zhang
Suhang Wang
AI4CE
30
11
0
16 Dec 2022
TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification
TAM: Topology-Aware Margin Loss for Class-Imbalanced Node Classification
Jae-gyun Song
Joonhyung Park
Eunho Yang
31
52
0
26 Jun 2022
Synthetic Over-sampling for Imbalanced Node Classification with Graph
  Neural Networks
Synthetic Over-sampling for Imbalanced Node Classification with Graph Neural Networks
Tianxiang Zhao
Xiang Zhang
Suhang Wang
25
6
0
10 Jun 2022
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
193
1,778
0
02 Mar 2017
1