Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.03620
Cited By
Hyperparameter Tuning with Renyi Differential Privacy
7 October 2021
Nicolas Papernot
Thomas Steinke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hyperparameter Tuning with Renyi Differential Privacy"
28 / 28 papers shown
Title
DPolicy: Managing Privacy Risks Across Multiple Releases with Differential Privacy
Nicolas Küchler
Alexander Viand
Hidde Lycklama
Anwar Hithnawi
26
0
0
10 May 2025
The Importance of Being Discrete: Measuring the Impact of Discretization in End-to-End Differentially Private Synthetic Data
Georgi Ganev
Meenatchi Sundaram Muthu Selva Annamalai
Sofiane Mahiou
Emiliano De Cristofaro
24
2
0
09 Apr 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
58
0
0
29 Mar 2025
Better Locally Private Sparse Estimation Given Multiple Samples Per User
Yuheng Ma
Ke Jia
Hanfang Yang
FedML
36
1
0
08 Aug 2024
DPDR: Gradient Decomposition and Reconstruction for Differentially Private Deep Learning
Yixuan Liu
Li Xiong
Yuhan Liu
Yujie Gu
Ruixuan Liu
Hong Chen
38
1
0
04 Jun 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
29
5
0
28 May 2024
Private Count Release: A Simple and Scalable Approach for Private Data Analytics
Ryan Rogers
29
0
0
08 Mar 2024
Blink: Link Local Differential Privacy in Graph Neural Networks via Bayesian Estimation
Xiaochen Zhu
Vincent Y. F. Tan
Xiaokui Xiao
22
9
0
06 Sep 2023
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
39
4
0
19 May 2023
Certified private data release for sparse Lipschitz functions
Konstantin Donhauser
J. Lokna
Amartya Sanyal
M. Boedihardjo
R. Honig
Fanny Yang
28
3
0
19 Feb 2023
Privately Customizing Prefinetuning to Better Match User Data in Federated Learning
Charlie Hou
Hongyuan Zhan
Akshat Shrivastava
Sida I. Wang
S. Livshits
Giulia Fanti
Daniel Lazar
FedML
29
15
0
17 Feb 2023
An Empirical Analysis of Fairness Notions under Differential Privacy
Anderson Santana de Oliveira
Caelin Kaplan
Khawla Mallat
Tanmay Chakraborty
FedML
13
7
0
06 Feb 2023
A New Linear Scaling Rule for Private Adaptive Hyperparameter Optimization
Ashwinee Panda
Xinyu Tang
Saeed Mahloujifar
Vikash Sehwag
Prateek Mittal
36
11
0
08 Dec 2022
Skellam Mixture Mechanism: a Novel Approach to Federated Learning with Differential Privacy
Ergute Bao
Yizheng Zhu
X. Xiao
Y. Yang
Beng Chin Ooi
B. Tan
Khin Mi Mi Aung
FedML
28
18
0
08 Dec 2022
Private Multi-Winner Voting for Machine Learning
Adam Dziedzic
Christopher A. Choquette-Choo
Natalie Dullerud
Vinith M. Suriyakumar
Ali Shahin Shamsabadi
Muhammad Ahmad Kaleem
S. Jha
Nicolas Papernot
Xiao Wang
31
1
0
23 Nov 2022
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
30
29
0
20 Nov 2022
Revisiting Hyperparameter Tuning with Differential Privacy
Youlong Ding
Xueyang Wu
16
0
0
03 Nov 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Y. Yang
39
20
0
18 Oct 2022
Fine-Tuning with Differential Privacy Necessitates an Additional Hyperparameter Search
Yannis Cattan
Christopher A. Choquette-Choo
Nicolas Papernot
Abhradeep Thakurta
15
20
0
05 Oct 2022
Algorithms that Approximate Data Removal: New Results and Limitations
Vinith M. Suriyakumar
Ashia C. Wilson
MU
40
27
0
25 Sep 2022
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
36
82
0
20 Jul 2022
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Rudrajit Das
Satyen Kale
Zheng Xu
Tong Zhang
Sujay Sanghavi
22
17
0
21 Jun 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
20
51
0
16 Jun 2022
Toward Training at ImageNet Scale with Differential Privacy
Alexey Kurakin
Shuang Song
Steve Chien
Roxana Geambasu
Andreas Terzis
Abhradeep Thakurta
30
99
0
28 Jan 2022
Plume: Differential Privacy at Scale
Kareem Amin
Jennifer Gillenwater
Matthew Joseph
Alex Kulesza
Sergei Vassilvitskii
15
9
0
27 Jan 2022
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection
Shubhankar Mohapatra
Sajin Sasy
Xi He
Gautam Kamath
Om Thakkar
109
32
0
09 Nov 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
290
1,814
0
14 Dec 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
139
178
0
28 Jul 2020
1