ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03420
11
17

RHH-LGP: Receding Horizon And Heuristics-Based Logic-Geometric Programming For Task And Motion Planning

7 October 2021
Cornelius V. Braun
Joaquim Ortiz de Haro
Marc Toussaint
Ozgur S. Oguz
ArXivPDFHTML
Abstract

Sequential decision-making and motion planning for robotic manipulation induce combinatorial complexity. For long-horizon tasks, especially when the environment comprises many objects that can be interacted with, planning efficiency becomes even more important. To plan such long-horizon tasks, we present the RHH-LGP algorithm for combined task and motion planning (TAMP). First, we propose a TAMP approach (based on Logic-Geometric Programming) that effectively uses geometry-based heuristics for solving long-horizon manipulation tasks. The efficiency of this planner is then further improved by a receding horizon formulation, resulting in RHH-LGP. We demonstrate the robustness and effectiveness of our approach on a diverse range of long-horizon tasks that require reasoning about interactions with a large number of objects. Using our framework, we can solve tasks that require multiple robots, including a mobile robot and snake-like walking robots, to form novel heterogeneous kinematic structures autonomously. By combining geometry-based heuristics with iterative planning, our approach brings an order-of-magnitude reduction of planning time in all investigated problems.

View on arXiv
Comments on this paper