ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03220
  4. Cited By
Gradient Step Denoiser for convergent Plug-and-Play

Gradient Step Denoiser for convergent Plug-and-Play

7 October 2021
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
ArXivPDFHTML

Papers citing "Gradient Step Denoiser for convergent Plug-and-Play"

50 / 56 papers shown
Title
Learning Cocoercive Conservative Denoisers via Helmholtz Decomposition for Poisson Inverse Problems
Learning Cocoercive Conservative Denoisers via Helmholtz Decomposition for Poisson Inverse Problems
Deliang Wei
Peng Chen
Haobo Xu
Jiale Yao
Fang Li
Tieyong Zeng
14
0
0
13 May 2025
PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
Maud Biquard
Marie Chabert
Florence Genin
Christophe Latry
Thomas Oberlin
29
0
0
14 Apr 2025
Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Jyothi Rikhab Chand
M. Jacob
DiffM
41
0
0
21 Mar 2025
Efficient Bayesian Computation Using Plug-and-Play Priors for Poisson Inverse Problems
Efficient Bayesian Computation Using Plug-and-Play Priors for Poisson Inverse Problems
Teresa Klatzer
Savvas Melidonis
Marcelo Pereyra
K. Zygalakis
47
0
0
20 Mar 2025
From Denoising Score Matching to Langevin Sampling: A Fine-Grained Error Analysis in the Gaussian Setting
Samuel Hurault
M. Terris
Thomas Moreau
Gabriel Peyré
DiffM
41
1
0
14 Mar 2025
Reconstruct Anything Model: a lightweight foundation model for computational imaging
Reconstruct Anything Model: a lightweight foundation model for computational imaging
M. Terris
Samuel Hurault
Maxime Song
Julian Tachella
MedIm
DiffM
70
2
0
11 Mar 2025
RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior
RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior
Ching Hua Lee
Chouchang Yang
Jaejin Cho
Yashas Malur Saidutta
R. S. Srinivasa
Yilin Shen
Hongxia Jin
DiffM
85
0
0
19 Feb 2025
Gradient Networks
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
50
0
0
28 Jan 2025
Analysis and Synthesis Denoisers for Forward-Backward Plug-and-Play
  Algorithms
Analysis and Synthesis Denoisers for Forward-Backward Plug-and-Play Algorithms
M. Kowalski
Benoit Malézieux
Thomas Moreau
Audrey Repetti
72
0
0
20 Nov 2024
Classification-Denoising Networks
Classification-Denoising Networks
Louis Thiry
Florentin Guth
34
0
0
04 Oct 2024
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
Ségolène Martin
Anne Gagneux
Paul Hagemann
Gabriele Steidl
42
9
0
03 Oct 2024
A Unified Plug-and-Play Algorithm with Projected Landweber Operator for
  Split Convex Feasibility Problems
A Unified Plug-and-Play Algorithm with Projected Landweber Operator for Split Convex Feasibility Problems
Shuchang Zhang
Hongxia Wang
21
0
0
22 Aug 2024
HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration
HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration
Shuchang Zhang
Hui Zhang
Hongxia Wang
53
0
0
18 Jul 2024
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Sebastian Neumayer
Fabian Altekrüger
34
1
0
18 Jun 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
67
1
0
08 Apr 2024
Learning pseudo-contractive denoisers for inverse problems
Learning pseudo-contractive denoisers for inverse problems
Deliang Wei
Peng Chen
Fang Li
22
4
0
08 Feb 2024
Plug-and-Play image restoration with Stochastic deNOising REgularization
Plug-and-Play image restoration with Stochastic deNOising REgularization
Marien Renaud
Jean Prost
Arthur Leclaire
Nicolas Papadakis
DiffM
52
7
0
01 Feb 2024
Low-resolution Prior Equilibrium Network for CT Reconstruction
Low-resolution Prior Equilibrium Network for CT Reconstruction
Yijie Yang
Qifeng Gao
Yuping Duan
24
0
0
28 Jan 2024
Learned reconstruction methods for inverse problems: sample error
  estimates
Learned reconstruction methods for inverse problems: sample error estimates
Luca Ratti
24
0
0
21 Dec 2023
Equivariant plug-and-play image reconstruction
Equivariant plug-and-play image reconstruction
M. Terris
Thomas Moreau
Nelly Pustelnik
Julian Tachella
31
16
0
04 Dec 2023
Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers
Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers
M. Terris
Thomas Moreau
24
0
0
30 Nov 2023
Variational Bayes image restoration with compressive autoencoders
Variational Bayes image restoration with compressive autoencoders
Maud Biquard
Marie Chabert
Thomas Oberlin
19
1
0
29 Nov 2023
Unsupervised approaches based on optimal transport and convex analysis
  for inverse problems in imaging
Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging
M. Carioni
Subhadip Mukherjee
Hongwei Tan
Junqi Tang
MedIm
29
3
0
15 Nov 2023
Convergent plug-and-play with proximal denoiser and unconstrained
  regularization parameter
Convergent plug-and-play with proximal denoiser and unconstrained regularization parameter
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
21
5
0
02 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Provably Convergent Data-Driven Convex-Nonconvex Regularization
Provably Convergent Data-Driven Convex-Nonconvex Regularization
Zakhar Shumaylov
Jeremy Budd
Subhadip Mukherjee
Carola-Bibiane Schönlieb
32
5
0
09 Oct 2023
Batch-less stochastic gradient descent for compressive learning of deep
  regularization for image denoising
Batch-less stochastic gradient descent for compressive learning of deep regularization for image denoising
Hui Shi
Yann Traonmilin
Jean-François Aujol
6
0
0
02 Oct 2023
Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence
  Analysis
Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis
S. Shoushtari
Jiaming Liu
Edward P. Chandler
M. Salman Asif
Ulugbek S. Kamilov
24
3
0
29 Sep 2023
Fast Diffusion EM: a diffusion model for blind inverse problems with
  application to deconvolution
Fast Diffusion EM: a diffusion model for blind inverse problems with application to deconvolution
Charles Laroche
Andrés Almansa
Eva Coupeté
DiffM
17
26
0
01 Sep 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction
  Algorithms
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
41
23
0
21 Aug 2023
Convergent regularization in inverse problems and linear plug-and-play
  denoisers
Convergent regularization in inverse problems and linear plug-and-play denoisers
A. Hauptmann
Subhadip Mukherjee
Carola-Bibiane Schönlieb
Ferdia Sherry
21
13
0
18 Jul 2023
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse
  Problems
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems
Samuel Hurault
Ulugbek Kamilov
Arthur Leclaire
Nicolas Papadakis
16
10
0
06 Jun 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
S. Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
20
11
0
22 May 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging
  Inverse Problems
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
28
3
0
17 Apr 2023
RED-PSM: Regularization by Denoising of Factorized Low Rank Models for
  Dynamic Imaging
RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging
Berk Iskender
M. Klasky
Y. Bresler
25
3
0
07 Apr 2023
Inverse problem regularization with hierarchical variational
  autoencoders
Inverse problem regularization with hierarchical variational autoencoders
Jean Prost
Antoine Houdard
Andrés Almansa
Nicolas Papadakis
16
4
0
20 Mar 2023
Fluctuation-based deconvolution in fluorescence microscopy using
  plug-and-play denoisers
Fluctuation-based deconvolution in fluorescence microscopy using plug-and-play denoisers
V. Stergiopoulou
Subhadip Mukherjee
L. Calatroni
Laure Blanc-Féraud
6
3
0
20 Mar 2023
Provably Convergent Plug-and-Play Quasi-Newton Methods
Provably Convergent Plug-and-Play Quasi-Newton Methods
Hongwei Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
28
13
0
09 Mar 2023
Restoration based Generative Models
Restoration based Generative Models
Jaemoo Choi
Yesom Park
Myung-joo Kang
DiffM
AI4CE
31
5
0
20 Feb 2023
A relaxed proximal gradient descent algorithm for convergent
  plug-and-play with proximal denoiser
A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
14
11
0
31 Jan 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
13
26
0
22 Nov 2022
Robustness of Deep Equilibrium Architectures to Changes in the
  Measurement Model
Robustness of Deep Equilibrium Architectures to Changes in the Measurement Model
Jun-Hao Hu
S. Shoushtari
Zihao Zou
Jiaming Liu
Zhixin Sun
Ulugbek S. Kamilov
51
4
0
01 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation
  Functions
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
46
50
0
04 Oct 2022
Video Restoration with a Deep Plug-and-Play Prior
Video Restoration with a Deep Plug-and-Play Prior
Antoine Monod
J. Delon
Matias Tassano
Andrés Almansa
25
1
0
06 Sep 2022
Deep Model-Based Architectures for Inverse Problems under Mismatched
  Priors
Deep Model-Based Architectures for Inverse Problems under Mismatched Priors
S. Shoushtari
Jiaming Liu
Yuyang Hu
Ulugbek S. Kamilov
26
6
0
26 Jul 2022
Learned reconstruction methods with convergence guarantees
Learned reconstruction methods with convergence guarantees
Subhadip Mukherjee
A. Hauptmann
Ozan Oktem
Marcelo Pereyra
Carola-Bibiane Schönlieb
22
49
0
11 Jun 2022
Automatic differentiation of nonsmooth iterative algorithms
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
15
21
0
31 May 2022
Online Deep Equilibrium Learning for Regularization by Denoising
Online Deep Equilibrium Learning for Regularization by Denoising
Jiaming Liu
Xiaojian Xu
Weijie Gan
S. Shoushtari
Ulugbek S. Kamilov
31
26
0
25 May 2022
PatchNR: Learning from Very Few Images by Patch Normalizing Flow
  Regularization
PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization
Fabian Altekrüger
Alexander Denker
Paul Hagemann
J. Hertrich
Peter Maass
Gabriele Steidl
MedIm
16
24
0
24 May 2022
12
Next