Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.03049
Cited By
Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training
6 October 2021
E. Haghighat
Daniel Amini
R. Juanes
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-informed neural network simulation of multiphase poroelasticity using stress-split sequential training"
18 / 18 papers shown
Title
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
107
230
0
26 Apr 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
163
455
0
18 Dec 2020
Physics-Informed Neural Network for Modelling the Thermochemical Curing Process of Composite-Tool Systems During Manufacture
S. Niaki
E. Haghighat
Trevor Campbell
Xinglong Li
R. Vaziri
AI4CE
100
208
0
27 Nov 2020
Energy-based error bound of physics-informed neural network solutions in elasticity
Mengwu Guo
E. Haghighat
PINN
101
29
0
18 Oct 2020
A Physics-Informed Machine Learning Approach for Solving Heat Transfer Equation in Advanced Manufacturing and Engineering Applications
N. Zobeiry
K. D. Humfeld
AI4CE
50
272
0
28 Sep 2020
Learning Unknown Physics of non-Newtonian Fluids
B. Reyes
Amanda A. Howard
P. Perdikaris
A. Tartakovsky
PINN
30
48
0
26 Aug 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
121
906
0
28 Jul 2020
Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive Physics Informed Neural Networks
Colby Wight
Jia Zhao
69
224
0
09 Jul 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
120
2,543
0
17 Jun 2020
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
54
224
0
10 Jun 2020
A nonlocal physics-informed deep learning framework using the peridynamic differential operator
E. Haghighat
A. Bekar
E. Madenci
R. Juanes
PINN
25
106
0
31 May 2020
Physics-informed deep learning for incompressible laminar flows
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
98
223
0
24 Feb 2020
Physics-informed Neural Networks for Solving Nonlinear Diffusivity and Biot's equations
T. Kadeethum
T. Jørgensen
H. Nick
PINN
AI4CE
82
110
0
19 Feb 2020
Physics Informed Deep Learning for Transport in Porous Media. Buckley Leverett Problem
Cedric G. Fraces
Adrien Papaioannou
H. Tchelepi
AI4CE
PINN
54
19
0
15 Jan 2020
Understanding and mitigating gradient pathologies in physics-informed neural networks
Sizhuang He
Yujun Teng
P. Perdikaris
AI4CE
PINN
89
293
0
13 Jan 2020
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
95
1,521
0
10 Jul 2019
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Zhao Chen
Vijay Badrinarayanan
Chen-Yu Lee
Andrew Rabinovich
ODL
152
1,284
0
07 Nov 2017
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
1