ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03036
  4. Cited By
The Low-Resource Double Bind: An Empirical Study of Pruning for
  Low-Resource Machine Translation

The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource Machine Translation

6 October 2021
Orevaoghene Ahia
Julia Kreutzer
Sara Hooker
ArXivPDFHTML

Papers citing "The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource Machine Translation"

18 / 18 papers shown
Title
On Importance of Pruning and Distillation for Efficient Low Resource NLP
On Importance of Pruning and Distillation for Efficient Low Resource NLP
Aishwarya Mirashi
Purva Lingayat
Srushti Sonavane
Tejas Padhiyar
Raviraj Joshi
Geetanjali Kale
26
1
0
21 Sep 2024
How Does Quantization Affect Multilingual LLMs?
How Does Quantization Affect Multilingual LLMs?
Kelly Marchisio
Saurabh Dash
Hongyu Chen
Dennis Aumiller
A. Ustun
Sara Hooker
Sebastian Ruder
MQ
52
6
0
03 Jul 2024
Critical Learning Periods: Leveraging Early Training Dynamics for
  Efficient Data Pruning
Critical Learning Periods: Leveraging Early Training Dynamics for Efficient Data Pruning
E. Chimoto
Jay Gala
Orevaoghene Ahia
Julia Kreutzer
Bruce A. Bassett
Sara Hooker
VLM
39
4
0
29 May 2024
Counting Carbon: A Survey of Factors Influencing the Emissions of
  Machine Learning
Counting Carbon: A Survey of Factors Influencing the Emissions of Machine Learning
A. Luccioni
Alex Hernandez-Garcia
31
45
0
16 Feb 2023
Multi-VALUE: A Framework for Cross-Dialectal English NLP
Multi-VALUE: A Framework for Cross-Dialectal English NLP
Caleb Ziems
William B. Held
Jingfeng Yang
Jwala Dhamala
Rahul Gupta
Diyi Yang
39
40
0
15 Dec 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training
  Dynamics
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
42
27
0
20 Sep 2022
Efficient Methods for Natural Language Processing: A Survey
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
Recall Distortion in Neural Network Pruning and the Undecayed Pruning
  Algorithm
Recall Distortion in Neural Network Pruning and the Undecayed Pruning Algorithm
Aidan Good
Jia-Huei Lin
Hannah Sieg
Mikey Ferguson
Xin Yu
Shandian Zhe
J. Wieczorek
Thiago Serra
29
11
0
07 Jun 2022
Pruning has a disparate impact on model accuracy
Pruning has a disparate impact on model accuracy
Cuong Tran
Ferdinando Fioretto
Jung-Eun Kim
Rakshit Naidu
39
38
0
26 May 2022
What Do Compressed Multilingual Machine Translation Models Forget?
What Do Compressed Multilingual Machine Translation Models Forget?
Alireza Mohammadshahi
Vassilina Nikoulina
Alexandre Berard
Caroline Brun
James Henderson
Laurent Besacier
AI4CE
42
9
0
22 May 2022
The Power of Prompt Tuning for Low-Resource Semantic Parsing
The Power of Prompt Tuning for Low-Resource Semantic Parsing
Nathan Schucher
Siva Reddy
H. D. Vries
VLM
111
36
0
16 Oct 2021
Carbon Emissions and Large Neural Network Training
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
244
644
0
21 Apr 2021
BinaryBERT: Pushing the Limit of BERT Quantization
BinaryBERT: Pushing the Limit of BERT Quantization
Haoli Bai
Wei Zhang
Lu Hou
Lifeng Shang
Jing Jin
Xin Jiang
Qun Liu
Michael Lyu
Irwin King
MQ
142
221
0
31 Dec 2020
Learning Light-Weight Translation Models from Deep Transformer
Learning Light-Weight Translation Models from Deep Transformer
Bei Li
Ziyang Wang
Hui Liu
Quan Du
Tong Xiao
Chunliang Zhang
Jingbo Zhu
VLM
120
40
0
27 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for
  High-Accuracy Learning?
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
253
93
0
11 Dec 2020
With Little Power Comes Great Responsibility
With Little Power Comes Great Responsibility
Dallas Card
Peter Henderson
Urvashi Khandelwal
Robin Jia
Kyle Mahowald
Dan Jurafsky
230
115
0
13 Oct 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
1