Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.02753
Cited By
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
6 October 2021
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semi-relaxed Gromov-Wasserstein divergence with applications on graphs"
34 / 34 papers shown
Title
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Jixing Xu
Zhen Peng
Jiecheng Guo
114
3
0
27 Jun 2024
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
352
1,148
0
27 Apr 2021
Online Graph Dictionary Learning
Cédric Vincent-Cuaz
Titouan Vayer
Rémi Flamary
Marco Corneli
Nicolas Courty
48
46
0
12 Feb 2021
Learning Graphons via Structured Gromov-Wasserstein Barycenters
Hongteng Xu
Dixin Luo
Lawrence Carin
H. Zha
84
31
0
10 Dec 2020
The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
Thibault Séjourné
François-Xavier Vialard
Gabriel Peyré
OT
62
70
0
09 Sep 2020
Generalized Spectral Clustering via Gromov-Wasserstein Learning
Samir Chowdhury
Tom Needham
43
54
0
07 Jun 2020
Partial Optimal Transport with Applications on Positive-Unlabeled Learning
Laetitia Chapel
Mokhtar Z. Alaya
Gilles Gasso
OT
31
8
0
19 Feb 2020
Gromov-Wasserstein Factorization Models for Graph Clustering
Hongteng Xu
59
49
0
19 Nov 2019
GOT: An Optimal Transport framework for Graph comparison
Hermina Petric Maretic
Mireille El Gheche
Giovanni Chierchia
P. Frossard
OT
129
119
0
05 Jun 2019
Wasserstein Weisfeiler-Lehman Graph Kernels
Matteo Togninalli
M. Ghisu
Felipe Llinares-López
Bastian Rieck
Karsten Borgwardt
61
199
0
04 Jun 2019
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
57
195
0
18 May 2019
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CE
SSL
SSeg
GNN
127
1,086
0
11 May 2019
A Survey on Graph Kernels
Nils M. Kriege
Fredrik D. Johansson
Christopher Morris
133
418
0
28 Mar 2019
GAP: Generalizable Approximate Graph Partitioning Framework
Azade Nazi
W. Hang
Anna Goldie
Sujith Ravi
Azalia Mirhoseini
63
61
0
02 Mar 2019
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Hongteng Xu
Dixin Luo
H. Zha
Lawrence Carin
89
259
0
17 Jan 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
754
8,526
0
03 Jan 2019
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
75
127
0
07 Nov 2018
Mean-field theory of graph neural networks in graph partitioning
T. Kawamoto
Masashi Tsubaki
T. Obuchi
72
58
0
29 Oct 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
192
1,634
0
04 Oct 2018
Bayesian Semi-supervised Learning with Graph Gaussian Processes
Yin Cheng Ng
Nicolo Colombo
Ricardo M. A. Silva
BDL
65
90
0
12 Sep 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
292
2,146
0
22 Jun 2018
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
63
273
0
23 May 2018
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
217
2,147
0
01 Mar 2018
DS*: Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems
Florian Bernard
Christian Theobalt
Michael Möller
78
43
0
29 Nov 2017
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning
M. Schmitz
Matthieu Heitz
Nicolas Bonneel
Fred-Maurice Ngole-Mboula
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
Jean-Luc Starck
OT
57
136
0
07 Aug 2017
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
S. Ktena
Sarah Parisot
Enzo Ferrante
Martin Rajchl
M. J. Lee
Ben Glocker
Daniel Rueckert
GNN
155
194
0
07 Mar 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
805
3,281
0
24 Nov 2016
Optimal spectral transportation with application to music transcription
Rémi Flamary
Cédric Févotte
Nicolas Courty
Valentin Emiya
OT
46
34
0
30 Sep 2016
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Simon Lacoste-Julien
71
195
0
01 Jul 2016
Adjusting for Chance Clustering Comparison Measures
Simone Romano
X. Nguyen
James Bailey
Karin Verspoor
42
182
0
03 Dec 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,039
0
22 Dec 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
212
4,259
0
04 Jun 2013
The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains
D. Shuman
S. K. Narang
P. Frossard
Antonio Ortega
P. Vandergheynst
126
3,972
0
31 Oct 2012
Improved Graph Clustering
Yudong Chen
Sujay Sanghavi
Huan Xu
194
190
0
11 Oct 2012
1