ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02673
  4. Cited By
Scaling Up Machine Learning For Quantum Field Theory with Equivariant
  Continuous Flows

Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows

6 October 2021
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
    AI4CE
ArXivPDFHTML

Papers citing "Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows"

20 / 20 papers shown
Title
Physics-Conditioned Diffusion Models for Lattice Gauge Theory
Qianteng Zhu
Gert Aarts
Wei Wang
K. Zhou
Lei Wang
58
1
0
08 Feb 2025
On learning higher-order cumulants in diffusion models
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
Lei Wang
K. Zhou
26
4
0
28 Oct 2024
Numerical determination of the width and shape of the effective string
  using Stochastic Normalizing Flows
Numerical determination of the width and shape of the effective string using Stochastic Normalizing Flows
M. Caselle
E. Cellini
A. Nada
33
4
0
24 Sep 2024
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
68
1
0
27 May 2024
Multi-Lattice Sampling of Quantum Field Theories via Neural
  Operator-based Flows
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
Bálint Máté
Franccois Fleuret
AI4CE
34
0
0
01 Jan 2024
Generative Diffusion Models for Lattice Field Theory
Generative Diffusion Models for Lattice Field Theory
Lei Wang
Gert Aarts
Kai Zhou
DiffM
38
10
0
06 Nov 2023
Advances in machine-learning-based sampling motivated by lattice quantum
  chromodynamics
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
29
27
0
03 Sep 2023
Sampling the lattice Nambu-Goto string using Continuous Normalizing
  Flows
Sampling the lattice Nambu-Goto string using Continuous Normalizing Flows
M. Caselle
E. Cellini
A. Nada
25
14
0
03 Jul 2023
Geometrical aspects of lattice gauge equivariant convolutional neural
  networks
Geometrical aspects of lattice gauge equivariant convolutional neural networks
J. Aronsson
David I. Müller
Daniel Schuh
31
7
0
20 Mar 2023
Learning Interpolations between Boltzmann Densities
Learning Interpolations between Boltzmann Densities
Bálint Máté
Franccois Fleuret
29
23
0
18 Jan 2023
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Deformations of Boltzmann Distributions
Deformations of Boltzmann Distributions
Bálint Máté
Franccois Fleuret
OT
28
2
0
25 Oct 2022
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Amortized Bayesian Inference of GISAXS Data with Normalizing Flows
Maksim Zhdanov
L. Randolph
T. Kluge
M. Nakatsutsumi
C. Gutt
M. Ganeva
Nico Hoffmann
34
0
0
04 Oct 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
27
13
0
17 Jun 2022
Neural Simulated Annealing
Neural Simulated Annealing
Alvaro H. C. Correia
Daniel E. Worrall
Roberto Bondesan
19
7
0
04 Mar 2022
Applications of Machine Learning to Lattice Quantum Field Theory
Applications of Machine Learning to Lattice Quantum Field Theory
D. Boyda
Salvatore Cali
Sam Foreman
L. Funcke
D. Hackett
...
Gert Aarts
A. Alexandru
Xiao-Yong Jin
B. Lucini
P. Shanahan
AI4CE
29
19
0
10 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
37
46
0
31 Jan 2022
Stochastic normalizing flows as non-equilibrium transformations
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
36
34
0
21 Jan 2022
Machine Learning of Thermodynamic Observables in the Presence of Mode
  Collapse
Machine Learning of Thermodynamic Observables in the Presence of Mode Collapse
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
14
13
0
22 Nov 2021
Lattice gauge symmetry in neural networks
Lattice gauge symmetry in neural networks
Matteo Favoni
A. Ipp
David I. Müller
Daniel Schuh
AI4CE
18
0
0
08 Nov 2021
1