ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02102
  4. Cited By
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning

CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning

5 October 2021
C. Benjamins
Theresa Eimer
Frederik Schubert
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
    OffRL
ArXivPDFHTML

Papers citing "CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning"

14 / 14 papers shown
Title
Single-Agent Planning in a Multi-Agent System: A Unified Framework for Type-Based Planners
Single-Agent Planning in a Multi-Agent System: A Unified Framework for Type-Based Planners
Fengming Zhu
Fangzhen Lin
82
1
0
13 Feb 2025
Robots Learn Increasingly Complex Tasks with Intrinsic Motivation and
  Automatic Curriculum Learning
Robots Learn Increasingly Complex Tasks with Intrinsic Motivation and Automatic Curriculum Learning
S. Nguyen
Nicolas Duminy
A. Manoury
D. Duhaut
Cédric Buche
21
7
0
11 Feb 2022
Robust Reinforcement Learning on State Observations with Learned Optimal
  Adversary
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
Huan Zhang
Hongge Chen
Duane S. Boning
Cho-Jui Hsieh
83
163
0
21 Jan 2021
Probabilistic Active Meta-Learning
Probabilistic Active Meta-Learning
Jean Kaddour
Steindór Sæmundsson
M. Deisenroth
49
35
0
17 Jul 2020
The NetHack Learning Environment
The NetHack Learning Environment
Heinrich Küttler
Nantas Nardelli
Alexander H. Miller
Roberta Raileanu
Marco Selvatici
Edward Grefenstette
Tim Rocktaschel
52
179
0
24 Jun 2020
Self-Paced Deep Reinforcement Learning
Self-Paced Deep Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
Joni Pajarinen
ODL
55
54
0
24 Apr 2020
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
81
83
0
06 Feb 2020
Provably efficient RL with Rich Observations via Latent State Decoding
Provably efficient RL with Rich Observations via Latent State Decoding
S. Du
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
Miroslav Dudík
John Langford
OffRL
42
230
0
25 Jan 2019
IMPALA: Scalable Distributed Deep-RL with Importance Weighted
  Actor-Learner Architectures
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
L. Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymyr Mnih
...
Vlad Firoiu
Tim Harley
Iain Dunning
Shane Legg
Koray Kavukcuoglu
145
1,584
0
05 Feb 2018
Automatic Goal Generation for Reinforcement Learning Agents
Automatic Goal Generation for Reinforcement Learning Agents
Carlos Florensa
David Held
Xinyang Geng
Pieter Abbeel
92
506
0
17 May 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
754
11,793
0
09 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
67
974
0
17 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
67
1,011
0
09 Nov 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
181
13,174
0
09 Sep 2015
1