Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.00604
Cited By
v1
v2
v3 (latest)
Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems
1 October 2021
Tommaso Giovannelli
G. Kent
Luis Nunes Vicente
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems"
29 / 29 papers shown
Title
On Penalty-based Bilevel Gradient Descent Method
Han Shen
Quan-Wu Xiao
Tianyi Chen
112
59
0
08 Jan 2025
On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation
Jeongyeol Kwon
Dohyun Kwon
Steve Wright
Robert D. Nowak
73
30
0
04 Sep 2023
Gradient-based Bi-level Optimization for Deep Learning: A Survey
Can Chen
Xiangshan Chen
Chen Ma
Zixuan Liu
Xue Liu
176
39
0
24 Jul 2022
Generalized Data Weighting via Class-level Gradient Manipulation
Can Chen
Shuhao Zheng
Xi Chen
Erqun Dong
Xue Liu
Hao Liu
Dejing Dou
85
24
0
29 Oct 2021
On the Convergence Theory for Hessian-Free Bilevel Algorithms
Daouda Sow
Kaiyi Ji
Yingbin Liang
85
28
0
13 Oct 2021
Provably Faster Algorithms for Bilevel Optimization
Junjie Yang
Kaiyi Ji
Yingbin Liang
100
136
0
08 Jun 2021
Learning to Continuously Optimize Wireless Resource in a Dynamic Environment: A Bilevel Optimization Perspective
Haoran Sun
Wenqiang Pu
Xiao Fu
Tsung-Hui Chang
Mingyi Hong
71
30
0
03 May 2021
Constrained Optimization to Train Neural Networks on Critical and Under-Represented Classes
Sara Sangalli
Ertunc Erdil
A. Hoetker
O. Donati
E. Konukoglu
AI4CE
63
28
0
21 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
143
229
0
27 Jan 2021
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
217
261
0
15 Oct 2020
Stabilizing Bi-Level Hyperparameter Optimization using Moreau-Yosida Regularization
Sauptik Dhar
Unmesh Kurup
Mohak Shah
74
2
0
27 Jul 2020
On the Promise of the Stochastic Generalized Gauss-Newton Method for Training DNNs
Matilde Gargiani
Andrea Zanelli
Moritz Diehl
Frank Hutter
ODL
66
18
0
03 Jun 2020
A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions
Pengzhen Ren
Yun Xiao
Xiaojun Chang
Po-Yao (Bernie) Huang
Zhihui Li
Xiaojiang Chen
Xin Wang
AI4CE
129
677
0
01 Jun 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
398
1,988
0
11 Apr 2020
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
130
416
0
06 Nov 2019
The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning
Suyun Liu
Luis Nunes Vicente
147
75
0
10 Jul 2019
Learning to Defend by Learning to Attack
Haoming Jiang
Zhehui Chen
Yuyang Shi
Bo Dai
T. Zhao
80
22
0
03 Nov 2018
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
206
4,375
0
24 Jun 2018
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
179
732
0
13 Jun 2018
Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations
Yiping Lu
Aoxiao Zhong
Quanzheng Li
Bin Dong
210
505
0
27 Oct 2017
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLM
CLL
133
2,743
0
26 Jun 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
319
12,151
0
19 Jun 2017
Practical Gauss-Newton Optimisation for Deep Learning
Aleksandar Botev
H. Ritter
David Barber
ODL
76
232
0
12 Jun 2017
A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications
Ankur Sinha
P. Malo
Kalyanmoy Deb
48
760
0
17 May 2017
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
256
3,226
0
15 Jun 2016
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
130
450
0
07 Feb 2016
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
159
1,455
0
21 Dec 2013
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
291
14,968
1
21 Dec 2013
1