ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.00211
24
49

DNN-Opt: An RL Inspired Optimization for Analog Circuit Sizing using Deep Neural Networks

1 October 2021
A. Budak
Prateek Bhansali
Bo Liu
Nan Sun
David Z. Pan
Chandramouli V. Kashyap
    AI4CE
ArXivPDFHTML
Abstract

Analog circuit sizing takes a significant amount of manual effort in a typical design cycle. With rapidly developing technology and tight schedules, bringing automated solutions for sizing has attracted great attention. This paper presents DNN-Opt, a Reinforcement Learning (RL) inspired Deep Neural Network (DNN) based black-box optimization framework for analog circuit sizing. The key contributions of this paper are a novel sample-efficient two-stage deep learning optimization framework leveraging RL actor-critic algorithms, and a recipe to extend it on large industrial circuits using critical device identification. Our method shows 5--30x sample efficiency compared to other black-box optimization methods both on small building blocks and on large industrial circuits with better performance metrics. To the best of our knowledge, this is the first application of DNN-based circuit sizing on industrial scale circuits.

View on arXiv
Comments on this paper