Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.00054
Cited By
v1
v2 (latest)
Learning to Predict Trustworthiness with Steep Slope Loss
30 September 2021
Yan Luo
Yongkang Wong
Mohan S. Kankanhalli
Qi Zhao
Re-assign community
ArXiv (abs)
PDF
HTML
Github (5★)
Papers citing
"Learning to Predict Trustworthiness with Steep Slope Loss"
12 / 12 papers shown
Title
Unveiling AI's Blind Spots: An Oracle for In-Domain, Out-of-Domain, and Adversarial Errors
Shuangpeng Han
Mengmi Zhang
367
0
0
03 Oct 2024
M2m: Imbalanced Classification via Major-to-minor Translation
Jaehyung Kim
Jongheon Jeong
Jinwoo Shin
92
224
0
01 Apr 2020
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
127
1,602
0
18 Jun 2019
Functional Adversarial Attacks
Cassidy Laidlaw
Soheil Feizi
AAML
72
185
0
29 May 2019
Dynamic Curriculum Learning for Imbalanced Data Classification
Yiru Wang
Weihao Gan
Jie Yang
Wei Wu
Junjie Yan
70
222
0
21 Jan 2019
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
176
472
0
30 May 2018
Selective Classification for Deep Neural Networks
Yonatan Geifman
Ran El-Yaniv
CVBM
95
527
0
23 May 2017
Large-Margin Softmax Loss for Convolutional Neural Networks
Weiyang Liu
Yandong Wen
Zhiding Yu
Meng Yang
CVBM
81
1,456
0
07 Dec 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
158
3,454
0
07 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
169
3,271
0
05 Dec 2014
1