ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.15062
  4. Cited By
Towards Principled Causal Effect Estimation by Deep Identifiable Models

Towards Principled Causal Effect Estimation by Deep Identifiable Models

30 September 2021
Pengzhou (Abel) Wu
Kenji Fukumizu
    BDL
    OOD
    CML
ArXivPDFHTML

Papers citing "Towards Principled Causal Effect Estimation by Deep Identifiable Models"

4 / 4 papers shown
Title
A Survey of Methods, Challenges and Perspectives in Causality
A Survey of Methods, Challenges and Perspectives in Causality
Gael Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
19
12
0
01 Feb 2023
Deep Multi-Modal Structural Equations For Causal Effect Estimation With
  Unstructured Proxies
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CML
SyDa
6
11
0
18 Mar 2022
$β$-Intact-VAE: Identifying and Estimating Causal Effects under
  Limited Overlap
βββ-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
35
14
0
11 Oct 2021
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
223
719
0
12 May 2016
1