Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.14236
Cited By
LightSecAgg: a Lightweight and Versatile Design for Secure Aggregation in Federated Learning
29 September 2021
Jinhyun So
Chaoyang He
Chien-Sheng Yang
Songze Li
Qian-long Yu
Ramy E. Ali
Başak Güler
Salman Avestimehr
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LightSecAgg: a Lightweight and Versatile Design for Secure Aggregation in Federated Learning"
18 / 18 papers shown
Title
Federated One-Shot Learning with Data Privacy and Objective-Hiding
Maximilian Egger
Rüdiger Urbanke
Rawad Bitar
FedML
54
0
0
29 Apr 2025
FedMVP: Federated Multi-modal Visual Prompt Tuning for Vision-Language Models
Mainak Singha
Subhankar Roy
Sarthak Mehrotra
Ankit Jha
Moloud Abdar
Biplab Banerjee
Elisa Ricci
VLM
VPVLM
119
0
0
29 Apr 2025
A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues
Zibo Wang
Haichao Ji
Yifei Zhu
Dan Wang
Zhu Han
51
1
0
19 Apr 2024
MetisFL: An Embarrassingly Parallelized Controller for Scalable & Efficient Federated Learning Workflows
Dimitris Stripelis
Chrysovalantis Anastasiou
Patrick Toral
Armaghan Asghar
J. Ambite
22
1
0
01 Nov 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
35
12
0
27 Mar 2023
FLINT: A Platform for Federated Learning Integration
Ewen N. Wang
Ajaykumar Kannan
Yuefeng Liang
Boyi Chen
Mosharaf Chowdhury
33
24
0
24 Feb 2023
ByzSecAgg: A Byzantine-Resistant Secure Aggregation Scheme for Federated Learning Based on Coded Computing and Vector Commitment
Tayyebeh Jahani-Nezhad
M. Maddah-ali
Giuseppe Caire
FedML
14
2
0
20 Feb 2023
Efficient Node Selection in Private Personalized Decentralized Learning
Edvin Listo Zec
Johan Ostman
Olof Mogren
D. Gillblad
19
1
0
30 Jan 2023
Unlocking Metaverse-as-a-Service The three pillars to watch: Privacy and Security, Edge Computing, and Blockchain
Vesal Ahsani
Alireza Rahimi
Mehdi Letafati
B. Khalaj
36
15
0
01 Jan 2023
Machine Unlearning of Federated Clusters
Chao Pan
Jin Sima
Saurav Prakash
Vishal Rana
O. Milenkovic
FedML
MU
31
25
0
28 Oct 2022
Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy
Zhifeng Jiang
Wei Wang
Ruichuan Chen
38
6
0
26 Sep 2022
How Much Privacy Does Federated Learning with Secure Aggregation Guarantee?
A. Elkordy
Jiang Zhang
Yahya H. Ezzeldin
Konstantinos Psounis
A. Avestimehr
FedML
35
38
0
03 Aug 2022
SwiftAgg+: Achieving Asymptotically Optimal Communication Loads in Secure Aggregation for Federated Learning
Tayyebeh Jahani-Nezhad
M. Maddah-ali
Songze Li
Giuseppe Caire
FedML
23
45
0
24 Mar 2022
Location Leakage in Federated Signal Maps
Evita Bakopoulou
Justin Ley
Jiang Zhang
Konstantinos Psounis
A. Markopoulou
FedML
18
5
0
07 Dec 2021
SSFL: Tackling Label Deficiency in Federated Learning via Personalized Self-Supervision
Chaoyang He
Zhengyu Yang
Erum Mushtaq
Sunwoo Lee
Mahdi Soltanolkotabi
A. Avestimehr
FedML
95
36
0
06 Oct 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
175
411
0
14 Jul 2021
Information Theoretic Secure Aggregation with User Dropouts
Yizhou Zhao
Hua Sun
FedML
59
67
0
19 Jan 2021
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
162
760
0
28 Sep 2019
1