ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13963
  4. Cited By
Smart at what cost? Characterising Mobile Deep Neural Networks in the
  wild

Smart at what cost? Characterising Mobile Deep Neural Networks in the wild

28 September 2021
Mario Almeida
Stefanos Laskaridis
Abhinav Mehrotra
L. Dudziak
Ilias Leontiadis
Nicholas D. Lane
    HAI
ArXivPDFHTML

Papers citing "Smart at what cost? Characterising Mobile Deep Neural Networks in the wild"

17 / 17 papers shown
Title
Graft: Efficient Inference Serving for Hybrid Deep Learning with SLO
  Guarantees via DNN Re-alignment
Graft: Efficient Inference Serving for Hybrid Deep Learning with SLO Guarantees via DNN Re-alignment
Jing Wu
Lin Wang
Qirui Jin
Fangming Liu
23
11
0
17 Dec 2023
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Maestro: Uncovering Low-Rank Structures via Trainable Decomposition
Samuel Horváth
Stefanos Laskaridis
Shashank Rajput
Hongyi Wang
BDL
32
4
0
28 Aug 2023
Mobile Foundation Model as Firmware
Mobile Foundation Model as Firmware
Jinliang Yuan
Chenchen Yang
Dongqi Cai
Shihe Wang
Xin Yuan
...
Di Zhang
Hanzi Mei
Xianqing Jia
Shangguang Wang
Mengwei Xu
37
19
0
28 Aug 2023
Green Federated Learning
Green Federated Learning
Ashkan Yousefpour
Sheng Guo
Ashish Shenoy
Sayan Ghosh
Pierre Stock
Kiwan Maeng
Schalk-Willem Kruger
Michael G. Rabbat
Carole-Jean Wu
Ilya Mironov
FedML
AI4CE
36
10
0
26 Mar 2023
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device
  Super-Resolution
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-Resolution
Stylianos I. Venieris
Mario Almeida
Royson Lee
Nicholas D. Lane
SupR
10
4
0
15 Dec 2022
Taxonomic Classification of IoT Smart Home Voice Control
Taxonomic Classification of IoT Smart Home Voice Control
M. Hewitt
H. Cunningham
11
1
0
24 Oct 2022
The Future of Consumer Edge-AI Computing
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
39
8
0
19 Oct 2022
Edge Security: Challenges and Issues
Edge Security: Challenges and Issues
Xin Jin
Charalampos Katsis
Fan Sang
Jiahao Sun
A. Kundu
Ramana Rao Kompella
39
8
0
14 Jun 2022
Automation Slicing and Testing for in-App Deep Learning Models
Automation Slicing and Testing for in-App Deep Learning Models
Hao Wu
Yuhang Gong
Xiaopeng Ke
Hanzhong Liang
Minghao Li
Fengyuan Xu
Yunxin Liu
Sheng Zhong
41
1
0
15 May 2022
EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision
  Transformers
EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision Transformers
Junting Pan
Adrian Bulat
Fuwen Tan
Xiatian Zhu
L. Dudziak
Hongsheng Li
Georgios Tzimiropoulos
Brais Martínez
ViT
31
180
0
06 May 2022
Benchmarking of DL Libraries and Models on Mobile Devices
Benchmarking of DL Libraries and Models on Mobile Devices
Qiyang Zhang
Xiang Li
Xiangying Che
Xiao Ma
Ao Zhou
Mengwei Xu
Shangguang Wang
Yun Ma
Xuanzhe Liu
25
48
0
14 Feb 2022
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
DynO: Dynamic Onloading of Deep Neural Networks from Cloud to Device
Mario Almeida
Stefanos Laskaridis
Stylianos I. Venieris
Ilias Leontiadis
Nicholas D. Lane
13
36
0
20 Apr 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
176
267
0
26 Feb 2021
Federated Evaluation and Tuning for On-Device Personalization: System
  Design & Applications
Federated Evaluation and Tuning for On-Device Personalization: System Design & Applications
Matthias Paulik
M. Seigel
Henry Mason
Dominic Telaar
Joris Kluivers
...
Dominic Hughes
O. Javidbakht
Fei Dong
Rehan Rishi
Stanley Hung
FedML
175
126
0
16 Feb 2021
It's always personal: Using Early Exits for Efficient On-Device CNN
  Personalisation
It's always personal: Using Early Exits for Efficient On-Device CNN Personalisation
Ilias Leontiadis
Stefanos Laskaridis
Stylianos I. Venieris
Nicholas D. Lane
63
29
0
02 Feb 2021
Scaling Up Online Speech Recognition Using ConvNets
Scaling Up Online Speech Recognition Using ConvNets
Vineel Pratap
Qiantong Xu
Jacob Kahn
Gilad Avidov
Tatiana Likhomanenko
Awni Y. Hannun
Vitaliy Liptchinsky
Gabriel Synnaeve
R. Collobert
149
38
0
27 Jan 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
1