ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13202
  4. Cited By
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning
  Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

27 September 2021
Mikayel Samvelyan
Robert Kirk
Vitaly Kurin
Jack Parker-Holder
Minqi Jiang
Eric Hambro
Fabio Petroni
Heinrich Küttler
Edward Grefenstette
Tim Rocktaschel
    OffRL
ArXivPDFHTML

Papers citing "MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research"

14 / 64 papers shown
Title
Learning to Query Internet Text for Informing Reinforcement Learning
  Agents
Learning to Query Internet Text for Informing Reinforcement Learning Agents
Kolby Nottingham
Alekhya Pyla
Sameer Singh
Roy Fox
RALM
11
3
0
25 May 2022
The Ludii Game Description Language is Universal
The Ludii Game Description Language is Universal
Dennis J. N. J. Soemers
Éric Piette
Matthew Stephenson
C. Browne
ELM
17
3
0
01 May 2022
Mind the gap: Challenges of deep learning approaches to Theory of Mind
Mind the gap: Challenges of deep learning approaches to Theory of Mind
Jaan Aru
Aqeel Labash
Oriol Corcoll
Raul Vicente
20
26
0
30 Mar 2022
Insights From the NeurIPS 2021 NetHack Challenge
Insights From the NeurIPS 2021 NetHack Challenge
Eric Hambro
Sharada Mohanty
Dmitrii Babaev
Mi-Ra Byeon
Dipam Chakraborty
...
Dan Rothermel
Mikayel Samvelyan
Dmitry Sorokin
Maciej Sypetkowski
Michal Sypetkowski
15
16
0
22 Mar 2022
L2Explorer: A Lifelong Reinforcement Learning Assessment Environment
L2Explorer: A Lifelong Reinforcement Learning Assessment Environment
Erik C. Johnson
Eric Q. Nguyen
B. Schreurs
Chigozie Ewulum
C. Ashcraft
Neil Fendley
Megan M. Baker
Alexander New
Gautam K. Vallabha
11
9
0
14 Mar 2022
Evolving Curricula with Regret-Based Environment Design
Evolving Curricula with Regret-Based Environment Design
Jack Parker-Holder
Minqi Jiang
Michael Dennis
Mikayel Samvelyan
Jakob N. Foerster
Edward Grefenstette
Tim Rocktaschel
31
115
0
02 Mar 2022
Improving Intrinsic Exploration with Language Abstractions
Improving Intrinsic Exploration with Language Abstractions
Jesse Mu
Victor Zhong
Roberta Raileanu
Minqi Jiang
Noah D. Goodman
Tim Rocktaschel
Edward Grefenstette
103
63
0
17 Feb 2022
Contextualize Me -- The Case for Context in Reinforcement Learning
Contextualize Me -- The Case for Context in Reinforcement Learning
C. Benjamins
Theresa Eimer
Frederik Schubert
Aditya Mohan
Sebastian Dohler
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
OffRL
22
29
0
09 Feb 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
30
100
0
11 Jan 2022
A Survey of Zero-shot Generalisation in Deep Reinforcement Learning
A Survey of Zero-shot Generalisation in Deep Reinforcement Learning
Robert Kirk
Amy Zhang
Edward Grefenstette
Tim Rocktaschel
OffRL
17
155
0
18 Nov 2021
SILG: The Multi-environment Symbolic Interactive Language Grounding
  Benchmark
SILG: The Multi-environment Symbolic Interactive Language Grounding Benchmark
Victor Zhong
Austin W. Hanjie
Sida Wang
Karthik Narasimhan
Luke Zettlemoyer
11
12
0
20 Oct 2021
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual
  Reinforcement Learning Agents
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual Reinforcement Learning Agents
Sam Powers
Eliot Xing
Eric Kolve
Roozbeh Mottaghi
Abhinav Gupta
OffRL
26
38
0
19 Oct 2021
Situated Dialogue Learning through Procedural Environment Generation
Situated Dialogue Learning through Procedural Environment Generation
Prithviraj Ammanabrolu
Renee Jia
Mark O. Riedl
103
14
0
07 Oct 2021
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
C. Benjamins
Theresa Eimer
Frederik Schubert
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
OffRL
41
23
0
05 Oct 2021
Previous
12