Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.12480
Cited By
Explainability Pitfalls: Beyond Dark Patterns in Explainable AI
26 September 2021
Upol Ehsan
Mark O. Riedl
XAI
SILM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explainability Pitfalls: Beyond Dark Patterns in Explainable AI"
30 / 30 papers shown
Title
Representation Engineering for Large-Language Models: Survey and Research Challenges
Lukasz Bartoszcze
Sarthak Munshi
Bryan Sukidi
Jennifer Yen
Zejia Yang
David Williams-King
Linh Le
Kosi Asuzu
Carsten Maple
102
0
0
24 Feb 2025
User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study
Szymon Bobek
Paloma Korycińska
Monika Krakowska
Maciej Mozolewski
Dorota Rak
Magdalena Zych
Magdalena Wójcik
Grzegorz J. Nalepa
ELM
29
1
0
21 Oct 2024
Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration
Philipp Spitzer
Joshua Holstein
Katelyn Morrison
Kenneth Holstein
Gerhard Satzger
Niklas Kühl
35
3
0
19 Sep 2024
Beyond Following: Mixing Active Initiative into Computational Creativity
Zhiyu Lin
Upol Ehsan
Rohan Agarwal
Samihan Dani
Vidushi Vashishth
Mark O. Riedl
41
0
0
06 Sep 2024
LLM-Generated Black-box Explanations Can Be Adversarially Helpful
R. Ajwani
Shashidhar Reddy Javaji
Frank Rudzicz
Zining Zhu
AAML
37
6
0
10 May 2024
Unraveling the Dilemma of AI Errors: Exploring the Effectiveness of Human and Machine Explanations for Large Language Models
Marvin Pafla
Kate Larson
Mark Hancock
35
6
0
11 Apr 2024
The European Commitment to Human-Centered Technology: The Integral Role of HCI in the EU AI Act's Success
André Calero Valdez
Moreen Heine
Thomas Franke
Nicole Jochems
Hans-Christian Jetter
Tim Schrills
21
0
0
22 Feb 2024
Beyond Behaviorist Representational Harms: A Plan for Measurement and Mitigation
Jennifer Chien
David Danks
34
13
0
25 Jan 2024
Explainable artificial intelligence approaches for brain-computer interfaces: a review and design space
Param S. Rajpura
H. Cecotti
Y. Meena
21
6
0
20 Dec 2023
Local Universal Explainer (LUX) -- a rule-based explainer with factual, counterfactual and visual explanations
Szymon Bobek
Grzegorz J. Nalepa
13
0
0
23 Oct 2023
An Ontology of Co-Creative AI Systems
Zhiyu Lin
Mark O. Riedl
16
3
0
11 Oct 2023
The Participatory Turn in AI Design: Theoretical Foundations and the Current State of Practice
Fernando Delgado
Stephen Yang
Michael A. Madaio
Qian Yang
73
100
0
02 Oct 2023
How Do Analysts Understand and Verify AI-Assisted Data Analyses?
Ken Gu
Ruoxi Shang
Tim Althoff
Chenglong Wang
Steven Drucker
AAML
38
25
0
19 Sep 2023
The Case Against Explainability
Hofit Wasserman Rozen
N. Elkin-Koren
Ran Gilad-Bachrach
AILaw
ELM
21
1
0
20 May 2023
Charting the Sociotechnical Gap in Explainable AI: A Framework to Address the Gap in XAI
Upol Ehsan
Koustuv Saha
M. D. Choudhury
Mark O. Riedl
18
57
0
01 Feb 2023
Selective Explanations: Leveraging Human Input to Align Explainable AI
Vivian Lai
Yiming Zhang
Chacha Chen
Q. V. Liao
Chenhao Tan
18
43
0
23 Jan 2023
Seamful XAI: Operationalizing Seamful Design in Explainable AI
Upol Ehsan
Q. V. Liao
Samir Passi
Mark O. Riedl
Hal Daumé
22
20
0
12 Nov 2022
Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making
Jakob Schoeffer
Maria De-Arteaga
Niklas Kuehl
FaML
43
46
0
23 Sep 2022
Connecting Algorithmic Research and Usage Contexts: A Perspective of Contextualized Evaluation for Explainable AI
Q. V. Liao
Yunfeng Zhang
Ronny Luss
Finale Doshi-Velez
Amit Dhurandhar
21
81
0
22 Jun 2022
"There Is Not Enough Information": On the Effects of Explanations on Perceptions of Informational Fairness and Trustworthiness in Automated Decision-Making
Jakob Schoeffer
Niklas Kuehl
Yvette Machowski
FaML
16
52
0
11 May 2022
The Conflict Between Explainable and Accountable Decision-Making Algorithms
Gabriel Lima
Nina Grgić-Hlavca
Jin Keun Jeong
M. Cha
11
37
0
11 May 2022
Interactive Model Cards: A Human-Centered Approach to Model Documentation
Anamaria Crisan
Margaret Drouhard
Jesse Vig
Nazneen Rajani
HAI
25
87
0
05 May 2022
A Human-Centric Perspective on Fairness and Transparency in Algorithmic Decision-Making
Jakob Schoeffer
FaML
20
3
0
29 Apr 2022
On the Relationship Between Explanations, Fairness Perceptions, and Decisions
Jakob Schoeffer
Maria De-Arteaga
Niklas Kuehl
FaML
19
6
0
27 Apr 2022
Explainability in reinforcement learning: perspective and position
Agneza Krajna
Mario Brčič
T. Lipić
Juraj Dončević
28
27
0
22 Mar 2022
Undoing Seamlessness: Exploring Seams for Critical Visualization
N. Hengesbach
22
8
0
04 Mar 2022
Investigating Explainability of Generative AI for Code through Scenario-based Design
Jiao Sun
Q. V. Liao
Michael J. Muller
Mayank Agarwal
Stephanie Houde
Kartik Talamadupula
Justin D. Weisz
33
157
0
10 Feb 2022
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
Upol Ehsan
Samir Passi
Q. V. Liao
Larry Chan
I-Hsiang Lee
Michael J. Muller
Mark O. Riedl
29
85
0
28 Jul 2021
How to Support Users in Understanding Intelligent Systems? Structuring the Discussion
Malin Eiband
Daniel Buschek
H. Hussmann
39
28
0
22 Jan 2020
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
323
4,203
0
23 Aug 2019
1