Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.11690
Cited By
Discovering and Validating AI Errors With Crowdsourced Failure Reports
23 September 2021
Ángel Alexander Cabrera
Abraham J. Druck
Jason I. Hong
Adam Perer
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Discovering and Validating AI Errors With Crowdsourced Failure Reports"
9 / 9 papers shown
Title
Angler: Helping Machine Translation Practitioners Prioritize Model Improvements
Samantha Robertson
Zijie J. Wang
Dominik Moritz
Mary Beth Kery
Fred Hohman
32
15
0
12 Apr 2023
fAIlureNotes: Supporting Designers in Understanding the Limits of AI Models for Computer Vision Tasks
Steven Moore
Q. V. Liao
Hariharan Subramonyam
19
27
0
22 Feb 2023
Improving Human-AI Collaboration With Descriptions of AI Behavior
Ángel Alexander Cabrera
Adam Perer
Jason I. Hong
22
34
0
06 Jan 2023
Capabilities for Better ML Engineering
Chenyang Yang
Rachel A. Brower-Sinning
Grace A. Lewis
Christian Kastner
Tongshuang Wu
24
3
0
11 Nov 2022
Understanding Practices, Challenges, and Opportunities for User-Engaged Algorithm Auditing in Industry Practice
Wesley Hanwen Deng
B. Guo
Alicia DeVrio
Hong Shen
Motahhare Eslami
Kenneth Holstein
MLAU
17
58
0
07 Oct 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
In Search of Ambiguity: A Three-Stage Workflow Design to Clarify Annotation Guidelines for Crowd Workers
V. Pradhan
M. Schaekermann
Matthew Lease
23
12
0
04 Dec 2021
Everyday algorithm auditing: Understanding the power of everyday users in surfacing harmful algorithmic behaviors
Hong Shen
Alicia DeVrio
Motahhare Eslami
Kenneth Holstein
MLAU
16
122
0
06 May 2021
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
1