Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.11523
Cited By
How much human-like visual experience do current self-supervised learning algorithms need in order to achieve human-level object recognition?
23 September 2021
Emin Orhan
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How much human-like visual experience do current self-supervised learning algorithms need in order to achieve human-level object recognition?"
7 / 7 papers shown
Title
The BabyView dataset: High-resolution egocentric videos of infants' and young children's everyday experiences
Bria Long
Violet Xiang
Stefan Stojanov
Robert Z. Sparks
Zi Yin
...
Steven Y. Feng
Chengxu Zhuang
V. Marchman
Daniel L. K. Yamins
Michael C. Frank
VGen
EgoV
28
2
0
14 Jun 2024
Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
Lukas Huber
Fred W. Mast
Felix A. Wichmann
23
0
0
14 Feb 2024
Scaling may be all you need for achieving human-level object recognition capacity with human-like visual experience
Emin Orhan
18
3
0
07 Aug 2023
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Kristen Grauman
Andrew Westbury
Eugene Byrne
Zachary Chavis
Antonino Furnari
...
Mike Zheng Shou
Antonio Torralba
Lorenzo Torresani
Mingfei Yan
Jitendra Malik
EgoV
224
1,018
0
13 Oct 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
314
5,775
0
29 Apr 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
255
4,777
0
24 Feb 2021
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
1