ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11311
16
0

Multi-resolution deep learning pipeline for dense large scale point clouds

23 September 2021
T. Richard
F. Dupont
Guillaume Lavoué
    3DPC
ArXivPDFHTML
Abstract

Recent development of 3D sensors allows the acquisition of extremely dense 3D point clouds of large-scale scenes. The main challenge of processing such large point clouds remains in the size of the data, which induce expensive computational and memory cost. In this context, the full resolution cloud is particularly hard to process, and details it brings are rarely exploited. Although fine-grained details are important for detection of small objects, they can alter the local geometry of large structural parts and mislead deep learning networks. In this paper, we introduce a new generic deep learning pipeline to exploit the full precision of large scale point clouds, but only for objects that require details. The core idea of our approach is to split up the process into multiple sub-networks which operate on different resolutions and with each their specific classes to retrieve. Thus, the pipeline allows each class to benefit either from noise and memory cost reduction of a sub-sampling or from fine-grained details.

View on arXiv
Comments on this paper