ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.10781
  4. Cited By
Introducing Symmetries to Black Box Meta Reinforcement Learning

Introducing Symmetries to Black Box Meta Reinforcement Learning

22 September 2021
Louis Kirsch
Sebastian Flennerhag
Hado van Hasselt
A. Friesen
Junhyuk Oh
Yutian Chen
ArXivPDFHTML

Papers citing "Introducing Symmetries to Black Box Meta Reinforcement Learning"

13 / 13 papers shown
Title
Structurally Flexible Neural Networks: Evolving the Building Blocks for
  General Agents
Structurally Flexible Neural Networks: Evolving the Building Blocks for General Agents
J. Pedersen
Erwan Plantec
Eleni Nisioti
Milton L. Montero
Sebastian Risi
41
1
0
06 Apr 2024
In-Context Reinforcement Learning for Variable Action Spaces
In-Context Reinforcement Learning for Variable Action Spaces
Viacheslav Sinii
Alexander Nikulin
Vladislav Kurenkov
Ilya Zisman
Sergey Kolesnikov
16
14
0
20 Dec 2023
Ever Evolving Evaluator (EV3): Towards Flexible and Reliable
  Meta-Optimization for Knowledge Distillation
Ever Evolving Evaluator (EV3): Towards Flexible and Reliable Meta-Optimization for Knowledge Distillation
Li Ding
M. Zoghi
Guy Tennenholtz
Maryam Karimzadehgan
20
0
0
29 Oct 2023
Brain-inspired learning in artificial neural networks: a review
Brain-inspired learning in artificial neural networks: a review
Samuel Schmidgall
Jascha Achterberg
Thomas Miconi
Louis Kirsch
Rojin Ziaei
S. P. Hajiseyedrazi
Jason Eshraghian
31
52
0
18 May 2023
A Survey of Meta-Reinforcement Learning
A Survey of Meta-Reinforcement Learning
Jacob Beck
Risto Vuorio
E. Liu
Zheng Xiong
L. Zintgraf
Chelsea Finn
Shimon Whiteson
OOD
OffRL
37
122
0
19 Jan 2023
General-Purpose In-Context Learning by Meta-Learning Transformers
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
31
72
0
08 Dec 2022
Meta-Gradients in Non-Stationary Environments
Meta-Gradients in Non-Stationary Environments
Jelena Luketina
Sebastian Flennerhag
Yannick Schroecker
David Abel
Tom Zahavy
Satinder Singh
23
10
0
13 Sep 2022
Minimal Neural Network Models for Permutation Invariant Agents
Minimal Neural Network Models for Permutation Invariant Agents
J. Pedersen
S. Risi
43
3
0
12 May 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
24
44
0
17 Mar 2022
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems
Jack Parker-Holder
Raghunandan Rajan
Xingyou Song
André Biedenkapp
Yingjie Miao
...
Vu-Linh Nguyen
Roberto Calandra
Aleksandra Faust
Frank Hutter
Marius Lindauer
AI4CE
30
100
0
11 Jan 2022
Meta Learning Backpropagation And Improving It
Meta Learning Backpropagation And Improving It
Louis Kirsch
Jürgen Schmidhuber
48
56
0
29 Dec 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
323
11,681
0
09 Mar 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
1