ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.10465
  4. Cited By
Scalable and Efficient MoE Training for Multitask Multilingual Models

Scalable and Efficient MoE Training for Multitask Multilingual Models

22 September 2021
Young Jin Kim
A. A. Awan
Alexandre Muzio
Andres Felipe Cruz Salinas
Liyang Lu
Amr Hendy
Samyam Rajbhandari
Yuxiong He
Hany Awadalla
    MoE
ArXivPDFHTML

Papers citing "Scalable and Efficient MoE Training for Multitask Multilingual Models"

22 / 22 papers shown
Title
QoS-Efficient Serving of Multiple Mixture-of-Expert LLMs Using Partial Runtime Reconfiguration
QoS-Efficient Serving of Multiple Mixture-of-Expert LLMs Using Partial Runtime Reconfiguration
HamidReza Imani
Jiaxin Peng
Peiman Mohseni
Abdolah Amirany
Tarek A. El-Ghazawi
MoE
31
0
0
10 May 2025
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
C. Kim
Sangwoo Moon
Jihwan Moon
Dongyeon Woo
Gunhee Kim
NoLa
57
0
0
25 Feb 2025
Mixture Compressor for Mixture-of-Experts LLMs Gains More
Mixture Compressor for Mixture-of-Experts LLMs Gains More
Wei Huang
Yue Liao
Jianhui Liu
Ruifei He
Haoru Tan
Shiming Zhang
Hongsheng Li
Si Liu
Xiaojuan Qi
MoE
39
3
0
08 Oct 2024
Not All Experts are Equal: Efficient Expert Pruning and Skipping for
  Mixture-of-Experts Large Language Models
Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models
Xudong Lu
Qi Liu
Yuhui Xu
Aojun Zhou
Siyuan Huang
Bo-Wen Zhang
Junchi Yan
Hongsheng Li
MoE
32
25
0
22 Feb 2024
LLMCarbon: Modeling the end-to-end Carbon Footprint of Large Language
  Models
LLMCarbon: Modeling the end-to-end Carbon Footprint of Large Language Models
Ahmad Faiz
S. Kaneda
Ruhan Wang
Rita Osi
Parteek Sharma
Fan Chen
Lei Jiang
31
56
0
25 Sep 2023
SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with
  Tunable Memory Budget
SwapMoE: Serving Off-the-shelf MoE-based Large Language Models with Tunable Memory Budget
Rui Kong
Yuanchun Li
Qingtian Feng
Weijun Wang
Xiaozhou Ye
Ye Ouyang
L. Kong
Yunxin Liu
MoE
29
8
0
29 Aug 2023
Towards Being Parameter-Efficient: A Stratified Sparsely Activated
  Transformer with Dynamic Capacity
Towards Being Parameter-Efficient: A Stratified Sparsely Activated Transformer with Dynamic Capacity
Da Xu
Maha Elbayad
Kenton W. Murray
Jean Maillard
Vedanuj Goswami
MoE
47
3
0
03 May 2023
Memory-efficient NLLB-200: Language-specific Expert Pruning of a
  Massively Multilingual Machine Translation Model
Memory-efficient NLLB-200: Language-specific Expert Pruning of a Massively Multilingual Machine Translation Model
Yeskendir Koishekenov
Alexandre Berard
Vassilina Nikoulina
MoE
35
29
0
19 Dec 2022
Fixing MoE Over-Fitting on Low-Resource Languages in Multilingual
  Machine Translation
Fixing MoE Over-Fitting on Low-Resource Languages in Multilingual Machine Translation
Maha Elbayad
Anna Y. Sun
Shruti Bhosale
MoE
51
8
0
15 Dec 2022
Revisiting Checkpoint Averaging for Neural Machine Translation
Revisiting Checkpoint Averaging for Neural Machine Translation
Yingbo Gao
Christian Herold
Zijian Yang
Hermann Ney
MoMe
25
11
0
21 Oct 2022
Finding Reusable Machine Learning Components to Build Programming
  Language Processing Pipelines
Finding Reusable Machine Learning Components to Build Programming Language Processing Pipelines
Patrick Flynn
T. Vanderbruggen
C. Liao
Pei-Hung Lin
M. Emani
Xipeng Shen
19
4
0
11 Aug 2022
DeepSpeed Inference: Enabling Efficient Inference of Transformer Models
  at Unprecedented Scale
DeepSpeed Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale
Reza Yazdani Aminabadi
Samyam Rajbhandari
Minjia Zhang
A. A. Awan
Cheng-rong Li
...
Elton Zheng
Jeff Rasley
Shaden Smith
Olatunji Ruwase
Yuxiong He
31
335
0
30 Jun 2022
Tutel: Adaptive Mixture-of-Experts at Scale
Tutel: Adaptive Mixture-of-Experts at Scale
Changho Hwang
Wei Cui
Yifan Xiong
Ziyue Yang
Ze Liu
...
Joe Chau
Peng Cheng
Fan Yang
Mao Yang
Y. Xiong
MoE
97
110
0
07 Jun 2022
Gating Dropout: Communication-efficient Regularization for Sparsely
  Activated Transformers
Gating Dropout: Communication-efficient Regularization for Sparsely Activated Transformers
R. Liu
Young Jin Kim
Alexandre Muzio
Hany Awadalla
MoE
50
22
0
28 May 2022
ST-MoE: Designing Stable and Transferable Sparse Expert Models
ST-MoE: Designing Stable and Transferable Sparse Expert Models
Barret Zoph
Irwan Bello
Sameer Kumar
Nan Du
Yanping Huang
J. Dean
Noam M. Shazeer
W. Fedus
MoE
24
181
0
17 Feb 2022
Unified Scaling Laws for Routed Language Models
Unified Scaling Laws for Routed Language Models
Aidan Clark
Diego de Las Casas
Aurelia Guy
A. Mensch
Michela Paganini
...
Oriol Vinyals
Jack W. Rae
Erich Elsen
Koray Kavukcuoglu
Karen Simonyan
MoE
27
177
0
02 Feb 2022
DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to
  Power Next-Generation AI Scale
DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale
Samyam Rajbhandari
Conglong Li
Z. Yao
Minjia Zhang
Reza Yazdani Aminabadi
A. A. Awan
Jeff Rasley
Yuxiong He
35
284
0
14 Jan 2022
The Efficiency Misnomer
The Efficiency Misnomer
Daoyuan Chen
Liuyi Yao
Dawei Gao
Ashish Vaswani
Yaliang Li
34
99
0
25 Oct 2021
Taming Sparsely Activated Transformer with Stochastic Experts
Taming Sparsely Activated Transformer with Stochastic Experts
Simiao Zuo
Xiaodong Liu
Jian Jiao
Young Jin Kim
Hany Hassan
Ruofei Zhang
T. Zhao
Jianfeng Gao
MoE
39
108
0
08 Oct 2021
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
177
414
0
18 Jan 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
261
4,489
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,821
0
17 Sep 2019
1