Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.09304
Cited By
Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks
20 September 2021
Zhichao Wang
Yizhe Zhu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deformed semicircle law and concentration of nonlinear random matrices for ultra-wide neural networks"
50 / 55 papers shown
Title
Overparameterized random feature regression with nearly orthogonal data
Zhichao Wang
Yizhe Zhu
52
4
0
11 Nov 2022
Asymptotic normality for eigenvalue statistics of a general sample covariance matrix when
p
/
n
→
∞
p/n \to \infty
p
/
n
→
∞
and applications
Jiaxin Qiu
Zeng Li
Jianfeng Yao
42
9
0
14 Sep 2021
Testing Kronecker Product Covariance Matrices for High-dimensional Matrix-Variate Data
Long Yu
Jiahui Xie
Wang Zhou
30
3
0
27 May 2021
Analysis of One-Hidden-Layer Neural Networks via the Resolvent Method
Vanessa Piccolo
Dominik Schröder
35
8
0
11 May 2021
Spiked Singular Values and Vectors under Extreme Aspect Ratios
M. Feldman
37
9
0
30 Apr 2021
Asymptotic Freeness of Layerwise Jacobians Caused by Invariance of Multilayer Perceptron: The Haar Orthogonal Case
B. Collins
Tomohiro Hayase
49
8
0
24 Mar 2021
Deep learning: a statistical viewpoint
Peter L. Bartlett
Andrea Montanari
Alexander Rakhlin
55
276
0
16 Mar 2021
Exact Gap between Generalization Error and Uniform Convergence in Random Feature Models
Zitong Yang
Yu Bai
Song Mei
42
17
0
08 Mar 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
95
138
0
16 Feb 2021
Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration
Song Mei
Theodor Misiakiewicz
Andrea Montanari
81
111
0
26 Jan 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
90
48
0
24 Jan 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
49
82
0
21 Dec 2020
What causes the test error? Going beyond bias-variance via ANOVA
Licong Lin
Yan Sun
47
34
0
11 Oct 2020
Kernel regression in high dimensions: Refined analysis beyond double descent
Fanghui Liu
Zhenyu Liao
Johan A. K. Suykens
46
50
0
06 Oct 2020
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
49
125
0
15 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
129
96
0
25 Jul 2020
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
Wei Hu
Lechao Xiao
Ben Adlam
Jeffrey Pennington
56
63
0
25 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
77
49
0
16 Jun 2020
The Spectrum of Fisher Information of Deep Networks Achieving Dynamical Isometry
Tomohiro Hayase
Ryo Karakida
50
7
0
14 Jun 2020
A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian Kernel, a Precise Phase Transition, and the Corresponding Double Descent
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
74
90
0
09 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
98
73
0
25 May 2020
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
64
169
0
21 Feb 2020
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
59
83
0
19 Feb 2020
Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology
Quynh N. Nguyen
Marco Mondelli
ODL
AI4CE
41
68
0
18 Feb 2020
Stationary Points of Shallow Neural Networks with Quadratic Activation Function
D. Gamarnik
Eren C. Kizildag
Ilias Zadik
33
13
0
03 Dec 2019
A Random Matrix Perspective on Mixtures of Nonlinearities for Deep Learning
Ben Adlam
J. Levinson
Jeffrey Pennington
57
25
0
02 Dec 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
83
635
0
14 Aug 2019
Limitations of Lazy Training of Two-layers Neural Networks
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
55
143
0
21 Jun 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao Song
Xin Yang
60
91
0
09 Jun 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
218
923
0
26 Apr 2019
Eigenvalue distribution of nonlinear models of random matrices
L. Benigni
Sandrine Péché
57
27
0
05 Apr 2019
Global Convergence of Adaptive Gradient Methods for An Over-parameterized Neural Network
Xiaoxia Wu
S. Du
Rachel A. Ward
72
65
0
19 Feb 2019
Towards moderate overparameterization: global convergence guarantees for training shallow neural networks
Samet Oymak
Mahdi Soltanolkotabi
48
321
0
12 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
195
972
0
24 Jan 2019
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
106
833
0
19 Dec 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
242
1,462
0
09 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
214
1,272
0
04 Oct 2018
Just Interpolate: Kernel "Ridgeless" Regression Can Generalize
Tengyuan Liang
Alexander Rakhlin
60
353
0
01 Aug 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
267
3,195
0
20 Jun 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
301
353
0
14 Jun 2018
On the Spectrum of Random Features Maps of High Dimensional Data
Zhenyu Liao
Romain Couillet
49
51
0
30 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
144
559
0
30 Apr 2018
Random Fourier Features for Kernel Ridge Regression: Approximation Bounds and Statistical Guarantees
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
58
156
0
26 Apr 2018
The Emergence of Spectral Universality in Deep Networks
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
58
173
0
27 Feb 2018
Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice
Jeffrey Pennington
S. Schoenholz
Surya Ganguli
ODL
43
252
0
13 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
118
1,093
0
01 Nov 2017
A Random Matrix Approach to Neural Networks
Cosme Louart
Zhenyu Liao
Romain Couillet
65
161
0
17 Feb 2017
Deep Information Propagation
S. Schoenholz
Justin Gilmer
Surya Ganguli
Jascha Narain Sohl-Dickstein
79
367
0
04 Nov 2016
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
88
591
0
16 Jun 2016
Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity
Amit Daniely
Roy Frostig
Y. Singer
160
343
0
18 Feb 2016
1
2
Next