ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.08711
  4. Cited By
Experimental Evaluation of Computational Complexity for Different Neural
  Network Equalizers in Optical Communications

Experimental Evaluation of Computational Complexity for Different Neural Network Equalizers in Optical Communications

17 September 2021
Pedro J. Freire
Yevhenii Osadchuk
A. Napoli
B. Spinnler
W. Schairer
N. Costa
Jaroslaw E. Prilepsky
S. Turitsyn
ArXivPDFHTML

Papers citing "Experimental Evaluation of Computational Complexity for Different Neural Network Equalizers in Optical Communications"

1 / 1 papers shown
Title
Multi-Agent Deep Reinforcement Learning for Dynamic Avatar Migration in
  AIoT-enabled Vehicular Metaverses with Trajectory Prediction
Multi-Agent Deep Reinforcement Learning for Dynamic Avatar Migration in AIoT-enabled Vehicular Metaverses with Trajectory Prediction
Junlong Chen
Jiawen Kang
Minrui Xu
Zehui Xiong
Dusit Niyato
Chuang Chen
Abbas Jamalipour
Shengli Xie
32
30
0
26 Jun 2023
1