LoGG3D-Net: Locally Guided Global Descriptor Learning for 3D Place Recognition

Retrieval-based place recognition is an efficient and effective solution for re-localization within a pre-built map, or global data association for Simultaneous Localization and Mapping (SLAM). The accuracy of such an approach is heavily dependent on the quality of the extracted scene-level representation. While end-to-end solutions - which learn a global descriptor from input point clouds - have demonstrated promising results, such approaches are limited in their ability to enforce desirable properties at the local feature level. In this paper, we introduce a local consistency loss to guide the network towards learning local features which are consistent across revisits, hence leading to more repeatable global descriptors resulting in an overall improvement in 3D place recognition performance. We formulate our approach in an end-to-end trainable architecture called LoGG3D-Net. Experiments on two large-scale public benchmarks (KITTI and MulRan) show that our method achieves mean scores of and on KITTI and MulRan respectively, achieving state-of-the-art performance while operating in near real-time. The open-source implementation is available at: https://github.com/csiro-robotics/LoGG3D-Net.
View on arXiv