ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07710
  4. Cited By
Exploiting Activation based Gradient Output Sparsity to Accelerate
  Backpropagation in CNNs

Exploiting Activation based Gradient Output Sparsity to Accelerate Backpropagation in CNNs

16 September 2021
Anup Sarma
Sonali Singh
Huaipan Jiang
Ashutosh Pattnaik
Asit K. Mishra
N. Vijaykrishnan
M. Kandemir
Chita R. Das
ArXivPDFHTML

Papers citing "Exploiting Activation based Gradient Output Sparsity to Accelerate Backpropagation in CNNs"

2 / 2 papers shown
Title
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,634
0
17 Apr 2017
ENet: A Deep Neural Network Architecture for Real-Time Semantic
  Segmentation
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
238
2,062
0
07 Jun 2016
1