ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07455
  4. Cited By
Deep Bregman Divergence for Contrastive Learning of Visual
  Representations

Deep Bregman Divergence for Contrastive Learning of Visual Representations

15 September 2021
Mina Rezaei
Farzin Soleymani
B. Bischl
Shekoofeh Azizi
    SSL
ArXivPDFHTML

Papers citing "Deep Bregman Divergence for Contrastive Learning of Visual Representations"

12 / 12 papers shown
Title
Stochastic Vision Transformers with Wasserstein Distance-Aware Attention
Stochastic Vision Transformers with Wasserstein Distance-Aware Attention
Franciskus Xaverius Erick
Mina Rezaei
Johanna P. Müller
Bernhard Kainz
9
0
0
30 Nov 2023
Temporally Aligning Long Audio Interviews with Questions: A Case Study
  in Multimodal Data Integration
Temporally Aligning Long Audio Interviews with Questions: A Case Study in Multimodal Data Integration
Piyush Singh Pasi
Karthikeya Battepati
P. Jyothi
Ganesh Ramakrishnan
T. Mahapatra
Manoj Singh
41
0
0
10 Oct 2023
Efficient Document Embeddings via Self-Contrastive Bregman Divergence
  Learning
Efficient Document Embeddings via Self-Contrastive Bregman Divergence Learning
Daniel Saggau
Mina Rezaei
Bernd Bischl
Ilias Chalkidis
SSL
MedIm
17
2
0
25 May 2023
Enhancing Contrastive Learning with Noise-Guided Attack: Towards
  Continual Relation Extraction in the Wild
Enhancing Contrastive Learning with Noise-Guided Attack: Towards Continual Relation Extraction in the Wild
Ting Wu
Jingyi Liu
Rui Zheng
Qi Zhang
Tao Gui
Xuanjing Huang
CLL
22
0
0
11 May 2023
Learning Empirical Bregman Divergence for Uncertain Distance
  Representation
Learning Empirical Bregman Divergence for Uncertain Distance Representation
Zhiyuan Li
Ziru Liu
An–Min Zou
Anca L. Ralescu
24
1
0
16 Apr 2023
How to Train Your DRAGON: Diverse Augmentation Towards Generalizable
  Dense Retrieval
How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval
Sheng-Chieh Lin
Akari Asai
Minghan Li
Barlas Oğuz
Jimmy J. Lin
Yashar Mehdad
Wen-tau Yih
Xilun Chen
26
93
0
15 Feb 2023
Label-efficient Time Series Representation Learning: A Review
Label-efficient Time Series Representation Learning: A Review
Emadeldeen Eldele
Mohamed Ragab
Zhenghua Chen
Min-man Wu
C. Kwoh
Xiaoli Li
AI4TS
25
13
0
13 Feb 2023
Joint Debiased Representation and Image Clustering Learning with
  Self-Supervision
Joint Debiased Representation and Image Clustering Learning with Self-Supervision
Shun Zheng
JaeEun Nam
Emilio Dorigatti
Bernd Bischl
Shekoofeh Azizi
Mina Rezaei
SSL
8
0
0
14 Sep 2022
Robust and Efficient Imbalanced Positive-Unlabeled Learning with
  Self-supervision
Robust and Efficient Imbalanced Positive-Unlabeled Learning with Self-supervision
Emilio Dorigatti
J. Schweisthal
Bernd Bischl
Mina Rezaei
OOD
13
2
0
06 Sep 2022
Cross-Lingual Phrase Retrieval
Cross-Lingual Phrase Retrieval
Heqi Zheng
Xiao Zhang
Zewen Chi
Heyan Huang
T. Yan
Tian Lan
Wei Wei
Xian-Ling Mao
RALM
LRM
27
3
0
19 Apr 2022
Generating Synthetic Mixed-type Longitudinal Electronic Health Records
  for Artificial Intelligent Applications
Generating Synthetic Mixed-type Longitudinal Electronic Health Records for Artificial Intelligent Applications
Jin Li
B. Cairns
Jingsong Li
T. Zhu
SyDa
20
67
0
22 Dec 2021
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
238
3,367
0
09 Mar 2020
1