ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07284
  4. Cited By
Quantitative reconstruction of defects in multi-layered bonded
  composites using fully convolutional network-based ultrasonic inversion

Quantitative reconstruction of defects in multi-layered bonded composites using fully convolutional network-based ultrasonic inversion

11 September 2021
J. Rao
Fangshu Yang
H. Mo
Stefan Kollmannsberger
E. Rank
ArXivPDFHTML

Papers citing "Quantitative reconstruction of defects in multi-layered bonded composites using fully convolutional network-based ultrasonic inversion"

1 / 1 papers shown
Title
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
460
15,657
0
02 Nov 2015
1