ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07129
  4. Cited By
What Does The User Want? Information Gain for Hierarchical Dialogue
  Policy Optimisation

What Does The User Want? Information Gain for Hierarchical Dialogue Policy Optimisation

15 September 2021
Christian Geishauser
Songbo Hu
Hsien-Chin Lin
Nurul Lubis
Michael Heck
Shutong Feng
Carel van Niekerk
Milica Gavsić
    OffRL
ArXivPDFHTML

Papers citing "What Does The User Want? Information Gain for Hierarchical Dialogue Policy Optimisation"

2 / 2 papers shown
Title
Rescue Conversations from Dead-ends: Efficient Exploration for
  Task-oriented Dialogue Policy Optimization
Rescue Conversations from Dead-ends: Efficient Exploration for Task-oriented Dialogue Policy Optimization
Yangyang Zhao
Zhenyu Wang
Mehdi Dastani
Shihan Wang
24
0
0
05 May 2023
Dialogue Evaluation with Offline Reinforcement Learning
Dialogue Evaluation with Offline Reinforcement Learning
Nurul Lubis
Christian Geishauser
Hsien-Chin Lin
Carel van Niekerk
Michael Heck
Shutong Feng
Milica Gavsić
OffRL
27
4
0
02 Sep 2022
1