Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.05751
Cited By
v1
v2 (latest)
Adversarially Trained Object Detector for Unsupervised Domain Adaptation
13 September 2021
Kazuma Fujii
Hiroshi Kera
K. Kawamoto
ObjD
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarially Trained Object Detector for Unsupervised Domain Adaptation"
22 / 22 papers shown
Title
I3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors
Chaoqi Chen
Zebiao Zheng
Yue Huang
Xinghao Ding
Yizhou Yu
OOD
ObjD
84
61
0
25 Mar 2021
A Free Lunch for Unsupervised Domain Adaptive Object Detection without Source Data
Xianfeng Li
Weijie Chen
Di Xie
Shicai Yang
Peng Yuan
Shiliang Pu
Yueting Zhuang
95
141
0
10 Dec 2020
A Review of Single-Source Deep Unsupervised Visual Domain Adaptation
Sicheng Zhao
Xiangyu Yue
Shanghang Zhang
Yue Liu
Han Zhao
...
Ravi Krishna
Joseph E. Gonzalez
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
Kurt Keutzer
97
268
0
01 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
89
425
0
16 Jul 2020
Harmonizing Transferability and Discriminability for Adapting Object Detectors
Chaoqi Chen
Zebiao Zheng
Xinghao Ding
Yue Huang
Qi Dou
90
275
0
13 Mar 2020
Unbiased Mean Teacher for Cross-domain Object Detection
Jinhong Deng
Wen Li
Yuhua Chen
Lixin Duan
203
297
0
02 Mar 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
138
1,181
0
12 Jan 2020
EfficientDet: Scalable and Efficient Object Detection
Mingxing Tan
Ruoming Pang
Quoc V. Le
115
5,061
0
20 Nov 2019
Progressive Domain Adaptation for Object Detection
Han-Kai Hsu
Chun-Han Yao
Yi-Hsuan Tsai
Wei-Chih Hung
Hung-Yu Tseng
M. Singh
Ming-Hsuan Yang
ObjD
98
312
0
24 Oct 2019
Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection
Seunghyeon Kim
Jaehoon Choi
Taekyung Kim
Changick Kim
78
192
0
02 Sep 2019
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
114
131
0
24 Jul 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
93
1,844
0
06 May 2019
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
108
1,782
0
30 May 2018
Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation
Naoto Inoue
Ryosuke Furuta
T. Yamasaki
Kiyoharu Aizawa
ObjD
93
532
0
30 Mar 2018
Domain Adaptive Faster R-CNN for Object Detection in the Wild
Yuhua Chen
Wen Li
Daniel Gehrig
Dengxin Dai
Luc Van Gool
OOD
ObjD
107
1,304
0
08 Mar 2018
Semantic Foggy Scene Understanding with Synthetic Data
Daniel Gehrig
Dengxin Dai
Luc Van Gool
101
1,107
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
317
12,131
0
19 Jun 2017
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Xun Huang
Serge J. Belongie
OOD
181
4,372
0
20 Mar 2017
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,644
0
06 Apr 2016
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
390
9,515
0
28 May 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
282
14,963
1
21 Dec 2013
1