Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.05263
Cited By
Class-Distribution-Aware Calibration for Long-Tailed Visual Recognition
11 September 2021
Mobarakol Islam
Lalithkumar Seenivasan
Hongliang Ren
Ben Glocker
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Class-Distribution-Aware Calibration for Long-Tailed Visual Recognition"
25 / 25 papers shown
Title
CLIMB-3D: Continual Learning for Imbalanced 3D Instance Segmentation
Vishal Thengane
Jean Lahoud
Hisham Cholakkal
Rao Muhammad Anwer
L. Yin
Xiatian Zhu
Salman Khan
CLL
389
0
0
24 Feb 2025
Is Label Smoothing Truly Incompatible with Knowledge Distillation: An Empirical Study
Zhiqiang Shen
Zechun Liu
Dejia Xu
Zitian Chen
Kwang-Ting Cheng
Marios Savvides
38
76
0
01 Apr 2021
Local Temperature Scaling for Probability Calibration
Zhipeng Ding
Xu Han
Peirong Liu
Marc Niethammer
50
78
0
12 Aug 2020
Balanced Meta-Softmax for Long-Tailed Visual Recognition
Jiawei Ren
Cunjun Yu
Shunan Sheng
Xiao Ma
Haiyu Zhao
Shuai Yi
Hongsheng Li
198
560
0
21 Jul 2020
Learning and Reasoning with the Graph Structure Representation in Robotic Surgery
Mobarakol Islam
Seenivasan Lalithkumar
Lim Chwee Ming
Hongliang Ren
38
39
0
07 Jul 2020
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
81
454
0
21 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
69
315
0
15 Feb 2020
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
63
378
0
28 Oct 2019
Distillation
≈
\approx
≈
Early Stopping? Harvesting Dark Knowledge Utilizing Anisotropic Information Retrieval For Overparameterized Neural Network
Bin Dong
Jikai Hou
Yiping Lu
Zhihua Zhang
54
41
0
02 Oct 2019
Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
UQCV
39
57
0
30 Sep 2019
Bin-wise Temperature Scaling (BTS): Improvement in Confidence Calibration Performance through Simple Scaling Techniques
Byeongmoon Ji
Hyemin Jung
Jihyeun Yoon
Kyungyul Kim
Younghak Shin
UQCV
44
24
0
30 Aug 2019
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
97
1,583
0
18 Jun 2019
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
154
1,931
0
06 Jun 2019
Large-Scale Long-Tailed Recognition in an Open World
Ziwei Liu
Zhongqi Miao
Xiaohang Zhan
Jiayun Wang
Boqing Gong
Stella X. Yu
134
1,148
0
10 Apr 2019
Measuring Calibration in Deep Learning
Jeremy Nixon
Michael W. Dusenberry
Ghassen Jerfel
Timothy Nguyen
Jeremiah Zhe Liu
Linchuan Zhang
Dustin Tran
UQCV
67
484
0
02 Apr 2019
What is the Effect of Importance Weighting in Deep Learning?
Jonathon Byrd
Zachary Chase Lipton
85
458
0
08 Dec 2018
Attended Temperature Scaling: A Practical Approach for Calibrating Deep Neural Networks
A. Mozafari
H. Gomes
Wilson Leão
Steeven Janny
Christian Gagné
47
26
0
27 Oct 2018
Deep Imbalanced Learning for Face Recognition and Attribute Prediction
Chen Huang
Yining Li
Chen Change Loy
Xiaoou Tang
CVBM
45
310
0
01 Jun 2018
Moonshine: Distilling with Cheap Convolutions
Elliot J. Crowley
Gavia Gray
Amos Storkey
53
121
0
07 Nov 2017
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
258
9,687
0
25 Oct 2017
A systematic study of the class imbalance problem in convolutional neural networks
Mateusz Buda
A. Maki
Maciej A. Mazurowski
156
2,335
0
15 Oct 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
226
5,774
0
14 Jun 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
290
4,620
0
10 Nov 2016
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
290
19,523
0
09 Mar 2015
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
158
2,114
0
21 Dec 2013
1