ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.04550
  4. Cited By
SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence
  Modeling on Dynamic Entity Embeddings

SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings

9 September 2021
Hongkuan Zhou
James Orme-Rogers
R. Kannan
Viktor Prasanna
    AI4TS
ArXivPDFHTML

Papers citing "SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings"

4 / 4 papers shown
Title
TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph
  Representation Learning
TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning
Gangda Deng
Hongkuan Zhou
Hanqing Zeng
Yinglong Xia
Christopher Leung
Jianbo Li
Rajgopal Kannan
Viktor Prasanna
24
1
0
08 Feb 2024
Bending the Future: Autoregressive Modeling of Temporal Knowledge Graphs
  in Curvature-Variable Hyperbolic Spaces
Bending the Future: Autoregressive Modeling of Temporal Knowledge Graphs in Curvature-Variable Hyperbolic Spaces
J. Sohn
Mingyu Derek Ma
Muhao Chen
27
2
0
12 Sep 2022
Model-Architecture Co-Design for High Performance Temporal GNN Inference
  on FPGA
Model-Architecture Co-Design for High Performance Temporal GNN Inference on FPGA
Hongkuan Zhou
Bingyi Zhang
R. Kannan
Viktor Prasanna
Carl E. Busart
GNN
26
23
0
10 Mar 2022
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
1