ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.02986
  4. Cited By
Instance-dependent Label-noise Learning under a Structural Causal Model

Instance-dependent Label-noise Learning under a Structural Causal Model

7 September 2021
Yu Yao
Tongliang Liu
Biwei Huang
Bo Han
Gang Niu
Kun Zhang
    CML
    NoLa
ArXivPDFHTML

Papers citing "Instance-dependent Label-noise Learning under a Structural Causal Model"

10 / 10 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
253
0
0
24 Apr 2025
Learning Causal Transition Matrix for Instance-dependent Label Noise
Learning Causal Transition Matrix for Instance-dependent Label Noise
Jiahui Li
Tai-wei Chang
Kun Kuang
Ximing Li
Long Chen
Zhiqiang Zhang
NoLa
CML
286
0
0
18 Dec 2024
PNT-Edge: Towards Robust Edge Detection with Noisy Labels by Learning
  Pixel-level Noise Transitions
PNT-Edge: Towards Robust Edge Detection with Noisy Labels by Learning Pixel-level Noise Transitions
Wenjie Xuan
Shanshan Zhao
Yu Yao
Juhua Liu
Tongliang Liu
Yixin Chen
Bo Du
Dacheng Tao
NoLa
34
6
0
26 Jul 2023
Instance-dependent Noisy-label Learning with Graphical Model Based
  Noise-rate Estimation
Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
41
1
0
31 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various
  Imprecise Label Configurations
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
45
12
0
22 May 2023
Smoothly Giving up: Robustness for Simple Models
Smoothly Giving up: Robustness for Simple Models
Tyler Sypherd
Nathan Stromberg
Richard Nock
Visar Berisha
Lalitha Sankar
28
1
0
17 Feb 2023
Instance-Dependent Noisy Label Learning via Graphical Modelling
Instance-Dependent Noisy Label Learning via Graphical Modelling
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
39
27
0
02 Sep 2022
Maximising the Utility of Validation Sets for Imbalanced Noisy-label
  Meta-learning
Maximising the Utility of Validation Sets for Imbalanced Noisy-label Meta-learning
D. Hoang
Cuong C. Nguyen
Cuong Nguyen anh Belagiannis Vasileios
G. Carneiro
28
2
0
17 Aug 2022
Towards Harnessing Feature Embedding for Robust Learning with Noisy
  Labels
Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels
Chuang Zhang
Li Shen
Jian Yang
Chen Gong
NoLa
27
5
0
27 Jun 2022
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
133
121
0
04 Feb 2021
1