Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.02966
Cited By
FH-SWF SG at GermEval 2021: Using Transformer-Based Language Models to Identify Toxic, Engaging, & Fact-Claiming Comments
7 September 2021
Tobias Bornheim
Stephan Bialonski
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FH-SWF SG at GermEval 2021: Using Transformer-Based Language Models to Identify Toxic, Engaging, & Fact-Claiming Comments"
5 / 5 papers shown
Title
Assessing In-context Learning and Fine-tuning for Topic Classification of German Web Data
Julian Schelb
Roberto Ulloa
Andreas Spitz
36
3
0
23 Jul 2024
POLygraph: Polish Fake News Dataset
Daniel Dzienisiewicz
Filip Graliñski
Piotr Jabłoński
Marek Kubis
Paweł Skórzewski
Piotr Wierzchoñ
42
0
0
01 Jul 2024
LCT-1 at SemEval-2023 Task 10: Pre-training and Multi-task Learning for Sexism Detection and Classification
K. Chernyshev
E. Garanina
Duygu Bayram
Qiankun Zheng
Lukas Edman
13
0
0
08 Jun 2023
Automatic Readability Assessment of German Sentences with Transformer Ensembles
Patrick Gustav Blaneck
Tobias Bornheim
Niklas Grieger
Stephan Bialonski
54
10
0
09 Sep 2022
What the [MASK]? Making Sense of Language-Specific BERT Models
Debora Nozza
Federico Bianchi
Dirk Hovy
92
106
0
05 Mar 2020
1