ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.02934
  4. Cited By
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization

Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization

7 September 2021
Alexandre Ramé
Corentin Dancette
Matthieu Cord
    OOD
ArXivPDFHTML

Papers citing "Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization"

11 / 61 papers shown
Title
Gradient Matching for Domain Generalization
Gradient Matching for Domain Generalization
Yuge Shi
Jeffrey S. Seely
Philip Torr
Siddharth Narayanaswamy
Awni Y. Hannun
Nicolas Usunier
Gabriel Synnaeve
OOD
229
246
0
20 Apr 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
59
1,179
0
02 Mar 2021
SWAD: Domain Generalization by Seeking Flat Minima
SWAD: Domain Generalization by Seeking Flat Minima
Junbum Cha
Sanghyuk Chun
Kyungjae Lee
Han-Cheol Cho
Seunghyun Park
Yunsung Lee
Sungrae Park
MoMe
216
425
0
17 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
215
126
0
04 Jan 2021
Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts
  Generalization
Catastrophic Fisher Explosion: Early Phase Fisher Matrix Impacts Generalization
Stanislaw Jastrzebski
Devansh Arpit
Oliver Åstrand
Giancarlo Kerg
Huan Wang
Caiming Xiong
R. Socher
Kyunghyun Cho
Krzysztof J. Geras
AI4CE
184
66
0
28 Dec 2020
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for
  Out-of-Distribution Robustness
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness
Sang Michael Xie
Ananya Kumar
Robbie Jones
Fereshte Khani
Tengyu Ma
Percy Liang
OOD
174
62
0
08 Dec 2020
An Investigation of Why Overparameterization Exacerbates Spurious
  Correlations
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
155
372
0
09 May 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
205
202
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
908
0
02 Mar 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
355
4,237
0
23 Aug 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
520
11,727
0
09 Mar 2017
Previous
12