ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.02224
  4. Cited By
On Empirical Risk Minimization with Dependent and Heavy-Tailed Data

On Empirical Risk Minimization with Dependent and Heavy-Tailed Data

6 September 2021
Abhishek Roy
Krishnakumar Balasubramanian
Murat A. Erdogdu
ArXivPDFHTML

Papers citing "On Empirical Risk Minimization with Dependent and Heavy-Tailed Data"

16 / 16 papers shown
Title
Uncertainty-based Offline Variational Bayesian Reinforcement Learning
  for Robustness under Diverse Data Corruptions
Uncertainty-based Offline Variational Bayesian Reinforcement Learning for Robustness under Diverse Data Corruptions
Rui Yang
Jie Wang
Guoping Wu
Yangqiu Song
AAML
OffRL
48
1
0
01 Nov 2024
Robust Max Statistics for High-Dimensional Inference
Robust Max Statistics for High-Dimensional Inference
Mingshuo Liu
Miles E. Lopes
27
1
0
25 Sep 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
47
1
0
01 Jun 2024
Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method
Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method
Charis J. Stamouli
Ingvar M. Ziemann
George J. Pappas
23
0
0
11 Apr 2024
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
54
8
0
08 Feb 2024
Neural Network Approximation for Pessimistic Offline Reinforcement
  Learning
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
29
1
0
19 Dec 2023
PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable
  RNNs
PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable RNNs
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
Mihaly Petreczky
25
3
0
15 Dec 2023
Towards Robust Offline Reinforcement Learning under Diverse Data
  Corruption
Towards Robust Offline Reinforcement Learning under Diverse Data Corruption
Rui Yang
Han Zhong
Jiawei Xu
Amy Zhang
Chong Zhang
Lei Han
Tong Zhang
OffRL
OnRL
41
15
0
19 Oct 2023
High-dimensional robust regression under heavy-tailed data: Asymptotics
  and Universality
High-dimensional robust regression under heavy-tailed data: Asymptotics and Universality
Sining Chen
Leonardo Defilippis
Bruno Loureiro
G. Sicuro
18
10
0
28 Sep 2023
Empirical Risk Minimization for Losses without Variance
Empirical Risk Minimization for Losses without Variance
Guanhua Fang
P. Li
G. Samorodnitsky
31
1
0
07 Sep 2023
The noise level in linear regression with dependent data
The noise level in linear regression with dependent data
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
35
5
0
18 May 2023
Constrained Stochastic Nonconvex Optimization with State-dependent
  Markov Data
Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
14
9
0
22 Jun 2022
Learning with little mixing
Learning with little mixing
Ingvar M. Ziemann
Stephen Tu
27
27
0
16 Jun 2022
On Monte-Carlo methods in convex stochastic optimization
On Monte-Carlo methods in convex stochastic optimization
Daniel Bartl
S. Mendelson
25
8
0
19 Jan 2021
Learning without Concentration for General Loss Functions
Learning without Concentration for General Loss Functions
S. Mendelson
63
65
0
13 Oct 2014
Learning without Concentration
Learning without Concentration
S. Mendelson
90
333
0
01 Jan 2014
1