Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.02224
Cited By
On Empirical Risk Minimization with Dependent and Heavy-Tailed Data
6 September 2021
Abhishek Roy
Krishnakumar Balasubramanian
Murat A. Erdogdu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Empirical Risk Minimization with Dependent and Heavy-Tailed Data"
16 / 16 papers shown
Title
Uncertainty-based Offline Variational Bayesian Reinforcement Learning for Robustness under Diverse Data Corruptions
Rui Yang
Jie Wang
Guoping Wu
Yangqiu Song
AAML
OffRL
48
1
0
01 Nov 2024
Robust Max Statistics for High-Dimensional Inference
Mingshuo Liu
Miles E. Lopes
27
1
0
25 Sep 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
47
1
0
01 Jun 2024
Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method
Charis J. Stamouli
Ingvar M. Ziemann
George J. Pappas
23
0
0
11 Apr 2024
Sharp Rates in Dependent Learning Theory: Avoiding Sample Size Deflation for the Square Loss
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
54
8
0
08 Feb 2024
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
29
1
0
19 Dec 2023
PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable RNNs
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
Mihaly Petreczky
25
3
0
15 Dec 2023
Towards Robust Offline Reinforcement Learning under Diverse Data Corruption
Rui Yang
Han Zhong
Jiawei Xu
Amy Zhang
Chong Zhang
Lei Han
Tong Zhang
OffRL
OnRL
41
15
0
19 Oct 2023
High-dimensional robust regression under heavy-tailed data: Asymptotics and Universality
Sining Chen
Leonardo Defilippis
Bruno Loureiro
G. Sicuro
18
10
0
28 Sep 2023
Empirical Risk Minimization for Losses without Variance
Guanhua Fang
P. Li
G. Samorodnitsky
31
1
0
07 Sep 2023
The noise level in linear regression with dependent data
Ingvar M. Ziemann
Stephen Tu
George J. Pappas
Nikolai Matni
35
5
0
18 May 2023
Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
14
9
0
22 Jun 2022
Learning with little mixing
Ingvar M. Ziemann
Stephen Tu
27
27
0
16 Jun 2022
On Monte-Carlo methods in convex stochastic optimization
Daniel Bartl
S. Mendelson
25
8
0
19 Jan 2021
Learning without Concentration for General Loss Functions
S. Mendelson
63
65
0
13 Oct 2014
Learning without Concentration
S. Mendelson
90
333
0
01 Jan 2014
1