Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01785
Cited By
Node Feature Kernels Increase Graph Convolutional Network Robustness
4 September 2021
M. Seddik
Changmin Wu
J. Lutzeyer
Michalis Vazirgiannis
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Node Feature Kernels Increase Graph Convolutional Network Robustness"
7 / 7 papers shown
Title
Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks
Yassine Abbahaddou
Sofiane Ennadir
J. Lutzeyer
Michalis Vazirgiannis
Henrik Bostrom
AAML
OOD
29
6
0
27 Apr 2024
A Simple and Yet Fairly Effective Defense for Graph Neural Networks
Sofiane Ennadir
Yassine Abbahaddou
J. Lutzeyer
Michalis Vazirgiannis
Henrik Bostrom
AAML
31
12
0
21 Feb 2024
Graph Neural Networks Use Graphs When They Shouldn't
Maya Bechler-Speicher
Ido Amos
Ran Gilad-Bachrach
Amir Globerson
GNN
AI4CE
6
14
0
08 Sep 2023
RDGSL: Dynamic Graph Representation Learning with Structure Learning
Siwei Zhang
Yun Xiong
Yao Zhang
Yiheng Sun
Xiangshan Chen
Yizhu Jiao
Yangyong Zhu
NoLa
37
11
0
05 Sep 2023
Robust Node Classification on Graphs: Jointly from Bayesian Label Transition and Topology-based Label Propagation
Jun Zhuang
M. Hasan
25
20
0
21 Aug 2022
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,078
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,944
0
09 Jun 2018
1